
MGST

McMaster Grid Scheduling
Testing Environment

By

Majd Kokaly, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.A.Sc
Department of Computing and Software

McMaster University

c© Copyright by Majd Kokaly, August 28, 2008

ii

MASTER OF APPLIED SCIENCE (2008) McMaster University
Hamilton, Ontario

TITLE: McMaster Grid Scheduling Testing Environment

AUTHOR: Majd Kokaly, B.Sc.(Birzeit University)

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: xiii, 122

Abstract

With the phenomenal growth of the Internet and the advancement of computing hard-

ware, grid architectures have been developed to exploit idle cycles in large networks of

computational resources. One key aim of resource management (scheduling) schemes

is to find mappings of incoming workload to machines within the grid to maximize

the output. The first contribution of this thesis is the construction of a tool to aid

researchers in testing and improving scheduling schemes, namely the McMaster Grid

Scheduling Testing Environment (MGST).

The Linear Programming Based Affinity Scheduling Scheme (LPAS DG) was in-

troduced by researchers at McMaster, and simulation results have been promising

in suggesting that this scheduling scheme outperforms other schemes when there is

high system heterogeneity and is competitive under lower levels of heterogeneity. The

second contribution of this research is providing suggestions to improve this scheme,

based on the results of experiments where the LPAS DG scheme was actually deployed

on the MGST testbed.

iii

Acknowledgements

The author would first like to acknowledge the guidance and great support provided

by his supervisor Dr. Douglas Down over the past two years. The support of his

wife and family is also appreciated. Issam Al-azzoni provided excellent feedback and

suggestions during this research and hence the author would like to thank him. The

author would like to thank Derek Lipiec as well for his help in setting up for the

experiments conducted during this research.

iv

Contents

Abstract iii

Acknowledgements iv

Table Of Content v

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Objective . 2

1.3 Contributions . 3

1.4 Thesis Outline . 3

2 Desktop Grids 5

2.1 Desktop Grids . 5

2.2 Desktop Grids in Practice . 9

2.2.1 History of Desktop Grids . 9

2.2.2 Examples of Desktop Grids 10

2.3 Xgrid Technology . 12

2.3.1 Overview . 12

2.3.2 Xgrid Terminology . 13

v

vi CONTENTS

2.3.3 Xgrid Usage . 13

2.3.4 Xgrid Components . 14

2.3.5 Xgrid Advantages . 16

2.4 Future of Desktop Grids . 16

3 Workload and Availability Models 18

3.1 Workload Model . 18

3.2 Availability Model . 19

4 Scheduling Schemes 22

4.1 Introduction . 22

4.2 Taxonomy of Desktop Grids . 23

4.2.1 Organization . 23

4.2.2 Homogeneity . 25

4.2.3 Scale . 26

4.2.4 Resource Provider . 26

4.3 Taxonomy of Desktop Grid Scheduling Policies 26

4.3.1 Organization . 28

4.3.2 Mode . 28

4.3.3 Scheduling Policy Complexity 29

4.3.4 Dynamism . 30

4.3.5 Adaptation . 30

4.3.6 Fault Tolerant . 31

4.4 Scheduling Policies . 32

4.4.1 FCFS . 32

4.4.2 MET . 33

4.4.3 MCT . 34

4.4.4 KPB . 35

4.4.5 Gcµ . 35

4.4.6 LPAS DG . 36

CONTENTS vii

5 System Design 40

5.1 System Requirements Specification 40

5.1.1 Purpose . 40

5.1.2 User Classes and Characteristics 40

5.1.3 User Documentation . 41

5.1.4 Functional Requirements . 41

5.1.5 Platform Requirements . 43

5.1.6 Maintainability Requirement 43

5.1.7 Usability Requirements . 43

5.2 Design . 43

5.2.1 Classes . 43

5.2.2 Module Interaction . 47

6 System Implementation 49

6.1 Introduction . 49

6.2 Java Related Background . 50

6.2.1 Java Delegation Event Model 50

6.2.2 Abstract Classes . 50

6.2.3 Polymorphism and Dynamic Binding 51

6.3 Packages . 51

6.3.1 adjusting . 51

6.3.2 executing . 51

6.3.3 generating . 52

6.3.4 interfacing . 52

6.3.5 logging . 54

6.3.6 mapping . 55

6.3.7 pulling . 56

6.3.8 probability distribution . 57

6.4 Adding New Scheduling Policies . 58

6.5 Adding New Probability Distributions 59

viii CONTENTS

6.6 Considerations in Design and Development 59

7 Analysis 62

7.1 Introduction . 62

7.2 Setting HiHi . 63

7.2.1 Experiment 1 . 64

7.2.2 Experiment 2 . 65

7.2.3 Experiment 3 . 69

7.2.4 Experiment 4 . 71

7.3 Setting LoHi . 75

7.3.1 Experiment 5 . 76

7.3.2 Experiment 6 . 76

7.4 Setting HiLo . 78

7.4.1 Experiment 7 . 79

7.4.2 Experiment 8 . 80

7.5 Setting LoLo . 82

7.5.1 Experiment 9 . 83

7.5.2 Experiment 10 . 84

7.5.3 Experiment 11 . 86

7.5.4 Experiment 12 . 88

8 Conclusion 91

8.1 Discussion . 91

8.1.1 Testing Environment . 91

8.1.2 LPAS DG implementation . 91

8.2 Future Work . 96

Appendices 102

A Source Code and Javadoc Documentation CD 103

CONTENTS ix

B User Manual 104

B.1 Preparation of Servers . 104

B.2 User Interface . 105

B.3 Definition Phase . 106

B.3.1 General Parameters . 106

B.3.2 Job Classes . 107

B.3.3 Servers . 107

B.3.4 Availability . 111

B.3.5 LP . 113

B.4 Monitoring . 114

B.5 Statistics . 115

C Instructions 118

C.1 Creating an Xgrid controller/agent machine 118

C.2 Setting the Xgrid agent to execute only one task at a time 120

D LoopUsed As a process 121

E Statistics 122

E.1 Ratios Statistics . 122

E.2 Availability Statistics . 122

List of Tables

7.1 Execution Rates of Setting A . 63

7.2 Results of simulation 1 . 64

7.3 Results of experiment 1 . 65

7.4 Results of simulation 2 . 66

7.5 Overall results of Experiment 2 . 67

7.6 Execution Rates in LPAS DG test in Experiment 2 67

7.7 Execution Rates in Gcµ test in Experiment 2 67

7.8 Results of simulation 3 . 70

7.9 Overall results of experiment 3 . 70

7.10 Results of simulation 4 . 72

7.11 Overall results of experiment 4 . 73

7.12 Execution Rates of Setting LoHi . 75

7.13 Results of simulation 5 . 76

7.14 Overall results of Experiment 5 . 77

7.15 Results of simulation 6 . 78

7.16 Overall results of experiment 6 . 78

7.17 Execution Rates of Setting HiLo . 79

7.18 Results of simulation 7 . 80

7.19 Overall results of experiment 7 . 80

7.20 Results of simulation 8 . 81

7.21 Overall results of experiment 8 . 82

7.22 Execution Rates of Setting LoLo . 83

x

LIST OF TABLES xi

7.23 Results of simulation 9 . 84

7.24 Overall results of experiment 9 . 84

7.25 Results of simulation 10 . 85

7.26 Overall results of experiment 10 . 86

7.27 Results of simulation 11 . 87

7.28 Overall results of experiment 11 . 88

7.29 Results of simulation 12 . 89

7.30 Overall results of experiment 12 . 90

List of Figures

2.1 The exponential growth of Internet users 7

2.2 The exponential growth of the number of transistors per IC 8

2.3 Example of how Xgrid works [8] . 15

4.1 Taxonomy of Desktop Grids. 24

4.2 Taxonomy of Desktop Grid Mappers. 27

5.1 Component Diagram of the system 44

5.2 Messages between modules. 48

6.1 A screen shot showing a server table (left) and a failure trace view

(right). 53

6.2 A log file opened in Numbers software 54

6.3 Sequence diagram showing communications when a job is sent and

mapped. 56

7.1 Experiment 1 results. 66

7.2 Experiment 2, FCFS test results. 68

7.3 Experiment 2 results. 69

7.4 Experiment 3, FCFS test results. 71

7.5 Experiment 3 results. 72

7.6 Experiment 4, FCFS test results. 73

7.7 Experiment 4 results. 75

7.8 Experiment 5 results. 77

xii

LIST OF FIGURES xiii

7.9 Experiment 6 results. 79

7.10 Experiment 7 results. 81

7.11 Experiment 8 results. 83

7.12 Experiment 9 results. 85

7.13 Experiment 10 results. 87

7.14 Experiment 11 results. 88

7.15 Experiment 12 results. 90

B.1 General Screen Shot . 105

B.2 Job Classes Screen Sub Tab . 108

B.3 Servers Screen Sub Tab . 110

B.4 Servers with processing rates. 111

B.5 Servers with failure periods. 112

B.6 Availability Screen Sub Tab . 113

B.7 LP Sub Tab . 114

B.8 Jobs Table . 115

B.9 Job Classes Statistics . 117

C.1 The Sharing Tab in System Preferences 119

C.2 The list of services and the Configure button. 120

E.1 Power-PC Machine (itb237-01) . 123

E.2 Intel-based Machine (itb237-04 . 123

E.3 Power-PC Machine (itb237-01) . 124

E.4 Intel-based Machine (itb237-04) . 124

Chapter 1

Introduction

1.1 Research Motivation

With knowledge comes the drive to pursue more knowledge. Recently, scientists

have developed the need for huge computational power. This need along with the

Internet coupled with the advancement of computers, has led to the development of

grid technology.

Research areas and applications that require large computational power include

biology, medicine, artificial intelligence, mathematics, cryptography and climate mod-

elling. For instance, current DNA-based research requires huge computational power.

The introduction of the personal computer and later the advancement and spread

of personal computers has contributed to the development of desktop grids. The

personal computers sold today are more than five orders of magnitude faster than

computers from 50 years ago [30].

The increase of the number of hosts connected to the Internet in recent years

has been phenomenal. From 1993 to 2007, the number of hosts connected to the

Internet increased by 19540% [27]. The majority of personal computers connected

to the Internet spend most of their time idle. Harvesting the idle cycles of personal

computers connected to the Internet can produce a powerful computing resource at

low cost.

1

2 1. Introduction

Grid technology is a powerful computational resource, and maximizing the output

of grid systems is challenging. Deploying an efficient scheduling scheme to map jobs

to machines is a key to maximize the output of a grid system.

The focus of this thesis is on grid architectures with heterogeneous processors.

Processor heterogeneity may be caused by several factors. The first is the intro-

duction of multi-core processors. Examples include the Cell processor used in the

PLAYSTATION 3 and the Core 2 family manufactured by Intel. Some of these cores

are non-identical, which results in heterogeneity. Some cores might be better in a

particular type of computing (e.g. vector operations) and worse in another type. A

second factor is the wide range of computing devices. Video game consoles as well

as cellphones and Internet tablets are joining personal computers in connecting to

the Internet. In the future, many devices that have a processor might be able to

participate in grid architectures.

Heterogeneity can be exploited by scheduling schemes. One way of doing so is

to send jobs to a server that can complete the job fastest. However, scheduling for

heterogeneous grids is challenging as sending jobs to processors that execute that

type of job slowly may result in wasting processing time which could have been used

to execute different type of jobs efficiently, this in turn can harm the scheduling

performance. In other words, because processors are different, choosing the right

processor has a more significant effect on the performance of scheduling schemes than

when processors are homogeneous (We will see this in more detail in Chapter 7).

Our work in this thesis is about testing and scheduling schemes, especially those

for heterogeneous grids. This thesis work involves creating a testing environment to

test and improve proposed policies.

1.2 Research Objective

In this thesis we will pursue the following research objective: Provide a testing envi-

ronment for theoretical scheduling policies on real grids.

The testing environment should be able to give testers the ability to simulate a

1. Introduction 3

heterogeneous grid in the case that homogeneous servers are being used. In addition,

we aim to develop an extensible environment to allow testers to add new scheduling

schemes.

1.3 Contributions

The main contributions of this research are:

• The development of an extensible testing environment (McMaster Grid

Scheduling Testing Environment (MGST)) that makes it possible to test and

improve scheduling schemes.

• Running experiments to test the implementability of the LPAS DG scheduling

scheme (defined in Chapter 4) and making suggestions to improve it.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 introduces Desktop grids and Xgrid Technology. First desktop grids

are discussed, followed by a brief explanation of Xgrid Technology. Finally, the future

of desktop grids is touched upon.

Chapter 3 elucidates firstly the workload model followed in this research and

then the machine availability model.

Chapter 4 serves as a literature review on scheduling schemes. In this chapter a

taxonomy of desktop grids as well as a taxonomy of scheduling policies are presented.

This is followed by a brief explanation of scheduling schemes used in this research.

Chapter 5 clarifies the system requirements specification and then explicates the

software design.

Chapter 6 introduces background information for concepts used in the software

implementation. This is followed by a brief explanation of the software packages

4 1. Introduction

and how to extend the software. This chapter is concluded with a discussion of

considerations taken in the design and development phases.

Chapter 7 illustrates tests and results obtained using the testing environment

developed.

Chapter 8 is the concluding chapter. It includes a discussion of the testing

environment as well as the testing results followed by suggestions for possible future

work.

Appendix A is a compact disc containing the source code and the executable

for the testing environment in addition to Javadoc Documentation.

Appendix B serves as a user manual explaining the functions of the system and

how to use them.

Appendix C is a collection of setting configurations procedures to help testers

in using the testing environment for future tests.

Chapter 2

Desktop Grids

2.1 Desktop Grids

A desktop grid is a distributed computer system. The purpose of desktop grids is to

provide specific computational or storage resources. The scale of such systems can

be as small as a lab in a university campus or as large as the Internet itself. In [31],

desktop grids are described as a large virtual computer formed by a networked set of

heterogeneous machines that contribute with their resources. The main purpose of

these systems is to exploit the dead cycles of millions of machines across the Internet

[21].

Desktop grids are constructed from a number of machines and a Resource Man-

agement System (RMS). The machines (which from this point we will interchangeably

call servers or machines) provide the computational and storage resources for the sys-

tem. The functionality provided by an RMS varies depends on the type of desktop

grid system. However, the basic service that any RMS will provide is accepting re-

quests (jobs) from clients and mapping specific machines’ resources to these requests.

The RMS is central to the operation of desktop grid systems [31].

Currently desktop grids are used mainly for research purposes by different uni-

versities and research centres. Some grid based projects are discussed later in this

chapter.

5

6 2. Desktop Grids

Desktop grid technology generates huge computational power that researchers

can use to conduct computationally intensive experiments at reasonable cost. Other

similar distributed computing technologies are clustered systems or dedicated grid

systems, where the servers are owned and managed by one organization and used as

a propriety system. Both technologies provide high computational power. Clustered

systems are easier to manage and operate but usually more expensive than desktop

grids since machines are bought and maintained at an organization’s expense. On

the contrary, in distributed desktop grids computational power is obtained by har-

nessing the idle cycles of voluntarily participating servers. Thus, a large amount of

computational power can be obtained from a distributed desktop grid at reasonable

cost, of course at the expense of more complex system management. Another impor-

tant difference between desktop grids and other distributed computing technologies

is the dynamic nature of servers in desktop grids. Servers can connect to the grid and

disconnect at any time, making it harder to predict the availability of servers in such

systems.

The invention and later the growth of this technology was driven by several factors.

The first one is the existence of a suitable infrastructure. This infrastructure is

constructed from the Internet and the hosts connected to it. The Internet provides

a means of communication and the computers connected to it provide computational

resources, meaning that building a Desktop grid requires only building a software

layer on top of an existing system.

The second factor is the massive growth of the Internet and the fact that there are

many connected hosts that are mostly idle. Figure 2.1 shows the exponential growth

of hosts connected to the Internet. In January of 1993 only 2,217,000 hosts were

discovered by the Internet Systems Consortium (ISC) survey host count, whereas in

January of 2007 the survey discovered 433,193,199, an increase of 19540% [27].

The number of users connected to the Internet is estimated to be 1.3 billion, which

means that around one fifth of the world’s population uses the Internet [27]. That

large number of users implies a correspondingly large number of connected computers.

The 433,193,199 servers discovered by the ISC in January 2007 were servers directly

2. Desktop Grids 7

Figure 2.1: The exponential growth of Internet users

connected to the Internet (computers with real IP addresses) [28]. The actual number

of hosts connecting through proxies is hard to measure, due to the fact that they are

protected by firewalls. In any case, this large number of computers generates a huge

potential of unexploited computing power.

The third factor is the exponential growth of computing power of individual com-

puters. According to Moore’s law, the number of transistors that can be inexpensively

placed on an integrated circuit (IC) increases exponentially, doubling approximately

every year [35]. Practically, the number of transistors placed on an IC circuit of

the same size is doubled every 18 - 24 months (Figure 2.2). The increase in num-

bers of transistors results in a corresponding increase in computational operations

done per second. It is worth mentioning that the introduction of multi-core proces-

sors (e.g. Intel Core 2 Duo) has significantly increased the computational power of

8 2. Desktop Grids

personal computers. Multi-core processors also provide the ability to concurrently

execute multiple threads. This ability allows for the execution of local tasks along

with desktop grid tasks without affecting the performance of the local machine.

Figure 2.2: The exponential growth of the number of transistors per IC

In summary, desktop grids are computer systems developed to use the idle com-

puting power of large numbers of computing machines. The widespread availability

of low-cost, high performance computing hardware and the phenomenal growth of

the Internet have created a suitable environment for desktop grid technology to be

deployed.

2. Desktop Grids 9

2.2 Desktop Grids in Practice

2.2.1 History of Desktop Grids

Although there is no consensus about the origins of grid computing, the roots of

this technology can be traced back to the late 1980s in fields related to distributed

supercomputing for numerically intensive applications, with particular emphasis on

scheduling algorithms (e.g. Condor [16], Load Sharing Facility [44]) [33]. Ian Forster

and Carl Kesselman are known to be amongst the first scientists to write about the

topic. Their publications include the seminal book The Grid: Blueprint for a New

Computing Infrastructure, which was published in 1999 [21], and an important paper

called Physiology of the Grid, which they co-wrote with several scientists in 2002 [22].

In addition to these publications, several projects are considered to be important

milestones. Two of these projects are discussed in the following paragraphs.

Distributed.net is the first Internet distributed computing project [17]. It was

founded in 1997. Distributed.net is a non-profit organization that tries to employ

the computational power donated by thousands of its users around the world for

academic research and public-interest projects. Their first project was RSA Secret-

Key Challenge, which was initiated by the RSA Laboratories Institute (www.rsa.com)

to demonstrate the relative security of different encryption algorithms. The challenge

was successfully completed after 212 days and the RC5-56 encryption algorithm was

cracked. Since then several projects have been successfully completed, while some are

still active at the time of writing of this thesis. For example, the Optimal Golomb

Rulers (OGR-25) project is still in progress. This project aims to find a solution for a

mathematical problem called the Golomb Ruler, and has been active since September

2000 [18].

SETI@Home is another distributed computing project that uses Internet-

connected computers. This project is managed by the Space Sciences Laboratory at

the University of California, Berkeley. The group working on this project describes

themselves on their web site as follows [41]:

SETI@home is a scientific experiment that uses Internet-connected com-

10 2. Desktop Grids

puters in the Search for Extraterrestrial Intelligence (SETI). You can par-

ticipate by running a free program that downloads and analyzes radio tele-

scope data.

The SETI project was released to the public in May 1999. Although the project

has not yet achieved its goal, it has proven the viability and practicality of the dis-

tributed computing concept. Another important goal was achieved when Berkeley

Open Infrastructure for Network Computing (BOINC) was developed to support

SETI@home and later turned into open source middleware for distributed comput-

ing. It is now being used in several distributed computing projects including Pro-

teins@home and Rosetta@home. The list of desktop grids provided in the next section

includes some of BOINC projects.

2.2.2 Examples of Desktop Grids

As mentioned earlier, the Internet’s rapid spread and the large increase of computa-

tional power has resulted in an increased use of distributed grid computing. There

are currently many desktop grids in operation. The following is a partial list.

• Proteins@home: Attempts to deduce the DNA sequence of given proteins [38].

• Rosetta@home: Tests the assembly of specific proteins, using appropriate frag-

ments of better-known proteins [40].

• FightAIDS@home: Helps to identify candidate drugs that might have the right

shape and chemical characteristics to block HIV protease [20].

• Compute Against Cancer: Used in cancer research [15].

• Artificial Intelligence System: Attempts to create a full simulation of the human

brain [2].

• ABC@Home: Attempts to solve the ABC conjecture in Mathematics [1].

2. Desktop Grids 11

• SHA-1 Collision Search: This project investigates the characteristics of SHA-1

hashing algorithms in terms of collision properties [42].

• Project Sudoku: Searches for the smallest possible start configuration of a Su-

doku game [45].

• APS@Home: Conducts research into the effects of atmospheric dispersion as it

relates to the accuracy of measurements used in climate prediction [9].

• Spinhenge@Home: Models the spin of elementary particles in atoms using the

principles of quantum mechanics [46].

• µFluids@Home: Simulates two-phase flow in microgravity and microfluidics

problems [48].

• BURP: Aims to develop a publicly distributed system for rendering 3D anima-

tions. The BURP project is still in its Alpha stage. The public nature of this

project makes it interesting and unique since users can upload animations to

the grid to be rendered (i.e. request tasks from the grid) [12].

• SETI@home: As mentioned above, this project searches for extraterrestrial

intelligence [41].

• Storage@home: In [11] the authors describe Storage@home as follows:

Storage@home is a distributed storage infrastructure developed to

solve the problem of backing up and sharing petabytes of scientific

results using a distributed model of volunteer managed hosts. Data is

maintained by a mixture of replication and monitoring, with repairs

done as needed. By the time of publication, the system should be out

of testing, in use, and available for volunteer participation

Storage@home is interesting because the main purpose behind it is not com-

puting but storage.

12 2. Desktop Grids

Each desktop grid works on at most a few tasks or experiments at a time. These

span several fields and topics such as Biology, Medicine, Artificial Intelligence, Math-

ematics, Cryptography, AI-based Games (e.g. Chess and Sudoku), Earth Sciences,

Physics, and Astronomy. Biology, Mathematics and Cryptography seem to be the

most active fields.

In spite of the fact that this type of research is relatively new and that the ac-

complishment of a task could take many years, a lot of tasks have been successfully

completed. For instance, the PiHex Project found that the five trillionth bit of π is 0

[37]. Although the impact of this result on science is questionable, it is an indicator of

the great computational power that grid computing can provide. On the other hand,

other projects have larger impact such as the Genome Comparison Project which

constructed a database comparing the genes from many genomes [24].

2.3 Xgrid Technology

In this section, the Xgrid Technology is discussed. Most of this section’s material is

taken from the official Xgrid manual [8].

2.3.1 Overview

Xgrid Technology is an Apple technology that simplifies the management and admin-

istration of distributed computing systems. Apple describes Xgrid in [8] as follows:

Xgrid, a technology in Mac OS X Server and Mac OS X, simplifies de-

ployment and management of computational grids. Xgrid enables admin-

istrators to group computers into grids or clusters, and allows users to

easily submit complex computations to groups of computers (local, remote,

or both), as either an ad hoc grid or a centrally managed cluster.

2. Desktop Grids 13

2.3.2 Xgrid Terminology

In Xgrid technology specific terms for its components and operations are used. The

following are needed for this thesis:

• Grid: a group of computers that can collaboratively complete a job using the

Xgrid technology in Mac OS X Server and Mac OS X.

• Controller: an Xgrid controller manages the grid and its work. It is built into

Mac OS X Server.

• Agent: an Xgrid agent resides on one computer in a grid and runs tasks sent to

it by the controller. Any computer running Mac OS X v10.3 or v10.4 can run

an Xgrid agent.

• Task: a part of a job that one agent in the grid performs at one time.

• Client: any computer running Mac OS X v10.4 or Mac OS X Server v10.4 that

submits a job to an Xgrid controller.

• Job: a set of work submitted to a grid from the client to the controller.

It is worth mentioning here that the Xgrid terminology is different than the ter-

minology we use for our system. For example, there is no concept of a task in our

system. In any case, the terminology and the way our system works is discussed in

Chapter 5.

2.3.3 Xgrid Usage

Xgrid can be used for three variations of distributed computing. It can be used in

clusters, distributed grids and local grids.

Xgrid Clusters are grids constructed from servers entirely dedicated to compu-

tation. Typically, cluster systems are collocated in a rack and connected via high

performance networks. Also these servers are often completely homogeneous. This

means that they have identical operating systems that run on similar hardware. These

14 2. Desktop Grids

types of systems are managed strictly for performance and their failure rates are low.

As a result, this type of distributed system is the most efficient. It is also more

expensive than the types described below.

Distributed Grids are grids constructed from servers distributed over the Inter-

net. Distributed grids have higher failure rates for jobs, but very low administrative

burden for the grid administrator. The Xgrid agent (the server) can be associated

with a specific controller by assigning the IP address or host name for its desired

controller. This type of computing is the focus of this thesis.

Local Grids are distributed grids where servers are distributed over intranets

under the administration of one organization. All the testing performed in this thesis

is done on such systems.

2.3.4 Xgrid Components

Figure 2.3 shows how Xgrid works. Every Xgrid system is mainly constructed from

three components: agents, clients and a controller.

Agents are the servers that run the computational jobs. Essentially an agent

in Xgrid is a Mac OS X computer with the Xgrid service (daemon) turned on. By

default this service is turned off. When the Xgrid agent is turned on, it becomes active

at startup and it registers itself with a controller. An agent can be registered with

only one controller at a time. By default, agents seek to bind to the first available

controller on the local network. Alternatively, a specific controller can be specified

for an agent.

The agent’s controller sends instructions and data to the agent. Upon receiving

the data from the controller, the agent starts the job execution and sends the results

back to the controller when finished. The agent can be set to accept instructions at

any time, however, the default behaviour is to accept tasks only when idle and when

the agent has not received any user input for at least 15 minutes.

A Client is any Mac OS X machine running Mac OS X v10.4 (Tiger) or later,

or Mac OS X Server v10.4, and has a network connection to the Xgrid controller.

Job submission is usually done by a command-line tool accessed with the Terminal

2. Desktop Grids 15

Figure 2.3: Example of how Xgrid works [8]

Application on Mac OS X. In the case of password protection, the protected controller

cannot accept jobs from any Xgrid client unless a valid password is provided with the

job submission.

A Controller manages the communications among the agents in an Xgrid system.

The controller accepts connections from clients and agents. It receives job submissions

from the clients, breaks the jobs up into tasks, dispatches tasks to the agents, and

returns results to the clients after receiving the results from the agents.

Every logical grid can have one controller. The theoretical maximum number of

agents connected to a controller is the number of available sockets on the controller

system.

16 2. Desktop Grids

2.3.5 Xgrid Advantages

After investigating several desktop grid technologies, Xgrid technology was chosen to

be employed in our system for several reasons:

• The number of departmental machines that can run Mac OS X. The department

has more than 50 machines that are running Mac OS X.

• Simple grid configuration and deployment. The process of configuring an Xgrid

system is neither complex nor time consuming.

• Straightforward yet flexible job submission. This flexibility can be exploited if

the system were to be extended. Adding new nodes is simple.

• Flexible architecture based on open standards.

• Supports command-line interface. This enables testing and enables the building

of software components on top of the Xgrid software to be automated.

• Xgrid has a good community around it. The Xgrid community was helpful

in the process of development. It also suggests that the Xgrid technology will

evolve and enjoy a long life span.

• Stability and reliability. It is used in large scale projects and has been tested

extensively by users.

• Password-based authentication support. This enables us to control access to

the system without building a security layer.

2.4 Future of Desktop Grids

Grid computing is currently an active research field. Several conferences are held

yearly. Grid computing technology is supported by large corporations such as IBM

and Apple. In addition, there are open architecture standards (e.g. BOINC) which

suggests that the future development will be standardized and open.

2. Desktop Grids 17

Another important factor that will determine the success of this technology in the

future is the commercial adoption of this technology. In [33] IBM states that:

Over the last few years we have seen grid computing evolve from a

niche technology associated with scientific and technical computing, into a

business-innovating technology that is driving increased commercial adop-

tion.

This commercial side of grid computing can be seen through the existence of services

like IBM Grid and GrowTM[33] and companies like PlatformTM[44], which suggests

that grid computing is a big part of the future of super computing.

Chapter 3

Workload and Availability Models

3.1 Workload Model

The theoretical workload model assumed in this thesis is the same model followed by

the authors of [3]. Hence the materiel of this section is taken from that resource.

In the assumed model for a Desktop Grid there is a dedicated Mapper. This

Mapper is responsible for scheduling and assigning incoming requests for resources to

the available resources in the Desktop Grid. The number of machines in the Grid is

M . It is assumed that the jobs are classified into N classes. Jobs of the same class

have common characteristics. Let J be the set of machines and I the set of classes.

Jobs that belong to the same class i have arrival rate αi. Let α be the arrival rate

vector, then the ith element of α is αi. Moreover, the average execution rate that

a machine j can execute a job from class i is denoted by µi,j. The actual execution

rate is µ′i,j = µi,j.aj where aj is the availability (given as a percentage) of the machine

(more details are provided in Section 3.2). In addition, µi is a vector that represents

the execution rates for a particular job class. The jth element in this vector is µi,j.

Finally, µ is the matrix constructed by all execution rate vectors, where the entry

(i, j) is µi,j.

The jobs in the model are assumed to be independent and atomic. They are

independent in the sense that the execution or the result of a job does not depend

18

3. Workload and Availability Models 19

on any other results of other jobs. Also, jobs are atomic in the sense that every job

is one complete unit and not a part of a larger job.

Pull-based scheduling is mainly used in resource management systems for Desktop

Grids [13]. Pull-based scheduling is a type of scheduling driven by servers announcing

their availability in order to be assigned a new job for execution. Please refer to Sec-

tion 4.2 for more details. In Desktop Grids, using pull-based scheduling is necessary

due to the property that the servers are not dedicated.

One of the results of using pull-based scheduling in Desktop Grids is that jobs

queue at the Mapper, hence there is no queuing at the servers. In fact in our model,

at most one job at a time can be executed without pre-emption on a server [19]. In

addition to that, in pull-based scheduling, the scheduler makes a decision as soon as

it receives a request from a machine. This is different from on-line mode mapping

where a mapping decision is made by the mapper as soon as a job arrives [36].

Servers can fail or become unavailable at any time without any advance notice

[7]. When a server fails while executing a job, then that job must be be resubmitted

to the mapper. It is assumed that the mapper becomes aware of the failure within

a negligible amount of time [32]. Moreover, it is assumed that the Desktop Grid

is used to execute short-lived applications [32]. Hence, in such systems, fault toler-

ant scheduling mechanisms such as checkpointing, migration and replication are not

considered, due to their overhead.

3.2 Availability Model

The main difference between cluster-based grids and desktop grids is that for the latter

the availability of machines and CPUs changes with time. The machine availability

is a binary value that indicates if a machine is reachable. Machines may become

unavailable due to communication failure or machine reboot, for example. The CPU

availability is a percentage that quantifies the fraction of the CPU time that can be

exploited by desktop grid applications [3]. (A brief literature review of availability

models and prediction methods can be found in [3].)

20 3. Workload and Availability Models

In [39], an approach for predicting machine availability in desktop grids is pre-

sented. In this approach, a semi-Markov process is applied for prediction. The exper-

iments in [39] suggested that their prediction method has an accuracy of 86%. They

also showed the effectiveness of their scheduling policies in large compute-bound guest

applications. The policies considered in this thesis assume short-lived applications.

In [39] the week was divided into weekdays and weekends and every day was divided

into hours.

We assume a strong correlation between the availability of a machine in a par-

ticular time and the availability of the same machine in previous weeks around the

same period of time (e.g. the availabilities of a machine around noon on successive

Mondays are related). A similar assumption is made in [39].

In our availability model we divided the time into days, with each day divided into

N equal intervals. The number of intervals and consequently their length is defined

by the tester.

The predicted availability in a specific interval i is calculated using the previous

readings in the same interval i from the previous weeks. Let d ∈ D, where D =

{Mo, Tu,We, Th, Fr, Sa, Su} (a day of the week), ad
i,j is the availability for interval

i of day d in the jth week, âd
i,j is the estimated availability for interval i of day d in

the jth week, wk is the weight given to the the reading ai,j−k and c is a number in [0,

1]. The current implementation has a choice of methods to estimate availability. The

first one is

âd
i,j =

∑N
k=1wja

d
i,j−k∑N

k=1wk

(3.1)

and the second is

âd
i,j = cad

i,j−1 + (1− c)âd
i,j−1. (3.2)

Using (3.1) gives the tester flexibility in choosing the weights for previous readings

and also the number of previous readings considered. Using (3.2) takes a different

approach by considering all previous readings. Also, the tester is given the flexibility

of choosing the value of c. This recursive prediction method is a typical way of

predicting time related properties or events [50].

3. Workload and Availability Models 21

As part of the testing environment, an availability prediction module that imple-

ments (3.1) and (3.2) was developed. The availabiliy predictor was implemented as

the java package pulling.availability prediction.

The default values for (3.1) are N = 4 and w1 = 0.4, w2 = 0.3, w3 = 0.2, w4 = 0.1.

N was chosen to be 4 to include the effect of the readings from the previous month

only. The weights were chosen in a way that gives more weight to recent readings

than older ones. As for (3.2), the default values are c = 0.5 and â0,j = 0.5, ∀j. Also,

(3.1) is the default method.

Chapter 4

Scheduling Schemes

4.1 Introduction

Desktop grid systems allow the development of applications for computationally in-

tensive problems and sustain throughputs far exceeding those of much more expensive

supercomputers. To achieve this efficiently, a scheduling policy is deployed.

The basic function of a scheduler, which applies the scheduling policy, is to accept

requests for resources from clients and assign specific server resources from the pool of

grid resources in a specific order, to achieve a certain goal. In other words, scheduling

is the process of assigning requests or tasks to the most suitable resource provider (i.e.

where to execute a task) and ordering requests or tasks (i.e. when to execute tasks)

[14]. Each scheduling policy is designed to optimize certain performance requirements.

Also, different scheduling polices require different information on the system state

(e.g. arrival rates and machine execution rates).

A scheduling policy must be scalable, i.e. applicable to large-scale systems in-

volving large numbers of computers. This scalability requirement may increase the

complexity of scheduling policies. The complexity is further complicated by several

factors. First, the scheduling policy must be fault-aware and cope with resource

volatility since resources can be disconnected from the grid at any time without any

advance notice. For example, a volunteer computer may be restarted or the resources

22

4. Scheduling Schemes 23

of a connected computer may become fully occupied with local jobs. Furthermore,

as desktop grids are constructed using volunteer computers, the resources are not

fully dedicated. Thus, a scheduling policy must exploit the available knowledge of

the effective computing power contributed by resources, which also adds additional

complexity [3].

Another contributing factor is related to the heterogeneous nature of desktop grids.

Scheduling polices that do not consider information on jobs and machine heterogene-

ity will perform poorly in heterogeneous environments. There is already work on

developing polices for cluster systems of dedicated and heterogeneous machines (see

Al-Azzoni and Down [4], He at al. [36] and Maheswaren et al. [43]). As for heteroge-

neous desktop grids the authors of [3] state that their paper “Dynamic Scheduling for

Heterogeneous Desktop Grids” is the first paper to consider the problem of scheduling

for heterogeneous Desktop Grids involving resource volatility.

The Linear Programming Based Affinity Scheduling policy for desktop grids

(LPAS DG) policy introduced in [3] will be discussed later in this chapter after in-

troducing a taxonomy of Desktop grids and scheduling polices.

4.2 Taxonomy of Desktop Grids

In [14], a taxonomy of desktop grid systems is suggested. This section is a summary

of that work. Desktop grids are categorized according to organization, platform, scale

and resource provider properties. Please refer to Figure 4.1.

4.2.1 Organization

In terms of organization, desktop grids can be divided into two categories according

to the organization of components.

24 4. Scheduling Schemes

Figure 4.1: Taxonomy of Desktop Grids.

Centralized Desktop Grids

A centralized desktop grid consists of clients, resource providers (or volunteer servers),

and a mapper (scheduler). The execution model of centralized desktop grids consists

of the following phases [14]:

• Registration phase: Resource providers register their information to the mapper.

• Job submission phase: A client submits a job to the mapper.

• Resource grouping phase: A mapper constructs a Computational Overlay Net-

work (CON) according to capability, availability, reputation, trust of resource

providers, etc. A CON is a set of resource providers. Scheduling is conducted on

the basis of a specific structure or topology. This step depends on the assumed

workload model.

• Job allocation phase: The mapper assigns tasks to servers.

• Job execution phase: Servers execute their tasks.

4. Scheduling Schemes 25

• Task result return phase: Servers return results to the mapper.

• Task result certification phase: The mapper checks the correctness of the re-

turned results. This step is done if the scheduling policy deploys a verification

mechanism.

Distributed Desktop Grids

A distributed desktop grid consists of clients and resource providers (or volunteer

servers). Distributed desktop grids lack the existence of a centralized mapper. How-

ever, volunteering servers have partial information about other volunteers. Volunteers

are responsible for constructing CONs and scheduling a job in a distributed fashion.

The execution model of distributed desktop grids is as follows:

• Registration phase: Servers exchange their information with each other.

• Job submission phase: A client submits a job to a neighbouring server.

• Resource grouping phase: Servers self-organize CONs according to several fac-

tors (e.g. capability, availability and reputation).

• Job allocation phase: A server assigns the job to other servers either to execute

or to schedule inside their CON according to a distributed scheduling policy.

• Job execution phase: Servers execute their task.

• Task result return phase: Servers return results to their parent servers.

• Task result certification phase: The parent server checks the correctness of the

returned results. This step is executed if the scheduling policy deploys a verifi-

cation mechanism.

4.2.2 Homogeneity

Desktop grids can be homogenous or heterogeneous. In homogenous grids, the

execution rates of two servers for different task classes are proportional; for instance, if

26 4. Scheduling Schemes

server s1 is twice as fast as server s2 in executing tasks from class 1, then server s1 will

be twice as fast as server s2 in executing all other classes. In heterogeneous grids

execution rates of different servers are not correlated. For example, in a heterogeneous

grid one might find a server s1, which is much faster than server s2 in executing tasks

that require a lot of matrix computations, while being slower on other task classes

that require different kinds of computations.

4.2.3 Scale

Desktop grids are categorized into Internet-based and Intranet-based. Internet-

based Desktop grids are constructed from servers around the Internet. On the other

hand, intranet-based desktop grids are based on servers within a corporation, a

university, or an institution. This type has more availability than Internet-based

desktop grids, however it is usually much smaller [14].

4.2.4 Resource Provider

Desktop grids are categorized into volunteer and enterprise categories. Volunteer

grids are constructed from servers whose owners willingly donate the idle time of

their machines. This type of grid is normally Internet-based. One the other hand,

enterprise grids are grids consisting of servers owned by a single organization, and

this type is usually Intranet-based [14].

4.3 Taxonomy of Desktop Grid Scheduling Poli-

cies

In [14], a taxonomy of desktop grid systems from the perspective of the scheduler

(mapper) is suggested. This section is a summary of a taxonomy of mappers de-

rived from that work. Mappers can be categorized according to organization, mode,

scheduling policy complexity, dynamism, adaptation and fault tolerant approaches

(Figure 4.2). The remainder of this section is an elaboration of each category.

4. Scheduling Schemes 27

Figure 4.2: Taxonomy of Desktop Grid Mappers.

28 4. Scheduling Schemes

4.3.1 Organization

The organization of a scheduling scheme can be classified into three categories: cen-

tralized, distributed, and hierarchical, depending on where and how scheduling deci-

sions are made. In the centralized approach, there is a central scheduler responsible

for the scheduling process. The central scheduler maintains all grid status informa-

tion. On the contrary, in the distributed approach, scheduling decisions are the

joint responsibility of all of the servers in the system. Each server has some partial

information about the system status that it uses in making its scheduling decisions.

Finally, in the hierarchical approach, scheduling decisions are performed in a hier-

archical fashion, where high level schedulers perform scheduling and assign tasks to

low level schedulers, which perform scheduling in a centralized way for their group of

servers [14].

4.3.2 Mode

Depending on when the scheduling process is initiated. Scheduling policies can be

categorized into two modes [14].

Push-based Mode

In this mode, the scheduling process is initiated when a task is submitted, and ends

when the scheduler assigns (or pushes) the task to a certain server according to the

scheduling policy. This mode is not common in desktop grids, due to their dynamic

nature and the fact that servers are not dedicated.

Pull-based Mode

In this mode, the scheduling process is initiated when a server declares its availability,

in other words when a server requests (or pulls) tasks from its mapper. This mode is

more common in desktop grids, due to their dynamic nature and the fact that servers

are not dedicated.

4. Scheduling Schemes 29

4.3.3 Scheduling Policy Complexity

In terms of complexity, schedulers can be divided into into three categories [14]:

simple, model-based, and heuristics-based.

In the simple approach, tasks and resources are selected by using a simple

approach like First Come First Served (FCFS) or the random scheduling policy [14].

The model-based approach is divided into deterministic, economy, and prob-

abilistic models. The deterministic model is based on a data structure or topology

such as queue, stack, tree, or ring. Tasks or resources are deterministically mapped

according to the properties of structures or topologies. For example, in a tree topol-

ogy, tasks are allocated from parent nodes to child nodes. In the economy model,

scheduling decisions are based on financial factors where priorities are given to tasks

according to the price paid by the job submitter. In the probabilistic model, resources

are selected using probabilistic models (e.g. Markov processes or genetic algorithms)

[14].

In the heuristics-based approach, tasks and resources are selected by using rank-

ing, matching and exclusion methods based on performance, capability, weight, prece-

dence, workload, availability, location, reputation/trust, etc. The ranking method

ranks the resources (servers) and tasks according to quantifying criteria and then

selects the most suitable resource and task (e.g. the largest or the smallest one).

The matching method selects the most suitable tasks and resources in accordance to

evaluation criteria (e.g. min-min, max-min, sufferage, etc.). The exclusion method

excludes resources according to a specific criterion, and then chooses the most appro-

priate one among the remaining set of resources. Ranking, matching, and exclusion

methods can be used together or separately. Criteria used in these methods are nu-

merous and the following are some of them: arrival time and task class are used only

for tasks while availability, performance, capability, location, and reputation are used

for servers [14].

30 4. Scheduling Schemes

4.3.4 Dynamism

Scheduling schemes are categorized as static or dynamic depending on the informa-

tion taken into consideration when making the scheduling decision. In the case of

static scheduling, the state information that the policy is aware of does not change

with time, hence no dynamic information about the resources (servers) is taken into

account (e.g. availability) when scheduling. Such a policy use the static information

from prior knowledge (prior to the start of the scheduling process) combined with the

request status to come to a scheduling decision. For example, the First Come First

Served policy is a static scheduling policy where only the prior static knowledge about

the servers and the dynamic information about requests are used. On the other hand

dynamic scheduling takes the general system status into consideration. Availabil-

ity information, performance information and the absence or presence of servers are

examples of the changing information that dynamic policies take into account when

making a scheduling decision. Dynamic scheduling policies cope well with the fact

that some servers may go off-line and others may join the grid, thus they suit large

scale Desktop grids.

Dynamic scheduling is further classified into online and periodic depending on

the time at which the scheduling event occurs. In the online approach, scheduling is

started by the arrival of a new task or a resource provider. In the periodic approach,

scheduling events occur periodically at a predefined interval.

4.3.5 Adaptation

Based on adaptation, scheduling schemes can be categorized as being adaptive or

non-adaptive.

Adaptive scheduling

Adaptive scheduling takes environmental stimuli into account to adapt to dynamically

changing environments. The environmental change leads to a change in the scheduling

policy to obtain better performance. There are several types of adaptive scheduling

4. Scheduling Schemes 31

mechanisms, and the following is list of them:

Migration

Migration is where tasks are moved from one server for some reason (for example,

moving a task from a server which has become busy with local jobs to a less busy

server).

Redundant assignment

Redundant assignment allows the assignment of the same task to more than one

server. Some policies may always allow redundant assignment to achieve replication,

others may only allow it under defined conditions (e.g. when the first assigned server

times out).

Change Policy

In this approach the scheduling policy used can be switched in order to cope with new

conditions dictated by environmental change. For example the Minimum Completion

Time policy can be switched to the Minimum Execution Time policy when the system

load distribution changes.

Non-adaptive scheduling

Non-adaptive scheduling does not take environmental stimuli into account.

4.3.6 Fault Tolerant

Scheduling policies are different in the way that they deal with faults. There are

several approaches that may be taken.

32 4. Scheduling Schemes

Checkpoints

In this approach, the current state of an active task is saved at different points through

the execution process in a manner such that if a failure was detected the failed task

can be restarted from the most recently saved point (called a checkpoint) on a different

server.

Reassignment

When a scheduler detects a failure in a server, it simply reassigns the task to another

server.

Replication

In this approach, replication is used as a method of fault tolerance. In case a server

failed when executing a specific task, the result can still be obtained from another

server executing the replicated task. This method anticipates failures, whereas Reas-

signment methods reacts to failures.

Result Certification

Scheduling polices can have a mechanism to validate results (or part of them) to

guarantee their correctness.

4.4 Scheduling Policies

In the following subsections different scheduling policies will be discussed. Some of

these scheduling schemes will be used in the experiments discussed in Chapter 7.

4.4.1 FCFS

First Come First Serve (FCFS) is one of the most basic scheduling policies. When a

server is available, the job that has been waiting the longest is assigned to that server

4. Scheduling Schemes 33

regardless of the processing rate of the server. The FCFS policy is easy to implement

and it does not add an overhead to the scheduling process since it does not maintain

a large amount of data, neither does it perform expensive calculations. However, we

will see that this scheme can perform poorly in heterogeneous environments (see the

experiments in Chapter 7).

4.4.2 MET

Minimum Execution Time (MET) is a static scheduling policy. A mapper using the

MET policy always gives the fastest machines the highest priority. An incoming task

is assigned to the machine that has the least expected execution time for the task.

Thus, when a new task of class i arrives in the system, the mapper assigns it to

machine j ∈ arg minj′1/µi,j′ [36]. As defined in Section 3.1, µi,j′ is the processing

rate of machine j′ for class i. Ties are broken arbitrarily; for example, the mapper

could pick the machine with the largest index j when more than one machine has the

minimum expected execution time [4].

This heuristic enjoys an advantage of not requiring machines to send their expected

completion times back to the mapper as tasks arrive, neither does it require them

to send availability (i.e. use effective processing rates), thus the MET policy requires

limited communication between the mapper and machines.

However, it may suffer from severe load imbalance, even causing the system to

become unstable. An illustration for such a case is a system with two machines and

one stream of tasks with rate α1 = 6, and the execution rates are µ1,1 = 5 and

µ1,2 = 3 for machine 1 and machine 2 respectfully. When the MET heuristic is used,

all tasks are mapped to machine 1, since the execution rate of machine 1 is larger

than that of machine 2. In this case the system will be unstable because tasks are

arriving to the system at a rate larger than that at which they are served (α1 > µ1,1).

It is easy to see that this instability can be avoided if an adequate portion of tasks

were assigned to machine 2, since α1 < (µ1,1 + µ1,2). The information used by this

policy is known prior to the start time of the mapping, making it a static policy.

34 4. Scheduling Schemes

4.4.3 MCT

Minimum Completion Time (MCT) is a dynamic scheduling policy. A mapper using

MCT assigns an arriving task to a machine that is expected to complete the task the

earliest, hence the term minimum completion time [36]. Minimum completion time

is calculated from two terms. The first includes the execution rates of the machines

for the arriving task class, and the second is how long machines are expected to be

busy for executing current tasks.

The MCT policy is stated formally as follows. When a task of class i arrives the

mapper assigns it to a machine j such that

j ∈ arg minj′{1/µi,j′ + Σi′∈IQi′,j′/µi′,j′} (4.1)

where Qi′,j′ is the number of tasks of class i′ that are executing or waiting at machine

j′, at the time of the arrival of task i. The mapper examines all the machines in the

grid system to find out the machine with the earliest expected completion time [4].

One drawback of this heuristic is that the mapper requires machines to send their

expected completion times, which might result in communication overhead in the

grid.

However, MCT mitigates the load imbalance that happens when using MET. To

illustrate how load imbalance is avoided, let us look again at the example from the

previous section. As a reminder, the system has two machines and one stream of

tasks arriving at rate α1 = 6, and the execution rates are µ1,1 = 5 and µ1,2 = 3

for machine 1 and machine 2 respectively. Under the MCT policy, when the first

task arrives (let this task be of class 1), the mapper assigns it to machine 1 since its

expected completion time is earlier than that of machine 2 (see (4.1)). If a second

task arrives within k time units where k < (1/µ1,1 + Q1,1/µ1,1 − 1/µi,2 + Q1,2/µ1,2),

the mapper will assign it to machine 2 despite the fact that machine 1 is faster than

machine 2 in executing the task. This is because machine 1 will be busy executing

the first task and the completion time for the task is less if sent to machine 2 (see

(4.1)). The fact that the mapper considers how busy the machines are, results in

mitigating the load imbalance problem from which MET can suffer.

4. Scheduling Schemes 35

Several existing resource management systems use the MCT policy or other polices

that are based on the MCT policy, including SmartNet [23].

4.4.4 KPB

The k-Percent Best (KPB) policy attempts to combine advantages of both the MET

and the MCT policies [36]. Upon the arrival of a task the mapper chooses the

(kM/100) best machines based on their execution times for the task class, where

100/M ≤ k ≤ 100. Then, the mapper assigns the task to the machine with the earli-

est expected completion time among the machines in that subset [4]. This policy first

uses MET on all the machines in order to pick the (kM/100) best machines and then

uses MCT on that subset of machines to pick a machine to send the task to. Doing

this not only guarantees that the task will be sent to a superior machine in terms

of execution rate (a guarantee that MET can offer), but also takes current machine

loads into consideration (a property of MCT).

The KPB policy needs only to communicate with the subset of machines first,

rather than with all of the machines in the grid. Another advantage for this policy

is that it attempts to avoid assigning the task to a machine that could do better for

tasks that arrive later [4].

The optimal value of k varies depending on the number of machines, execution

rates and arrival rates. The KPB policy can perform poorly relative to the MCT

policy if some machines are not among the best k% for any task class [4]. Also, if

k = M , then the KPB policy is identical to MCT. On the contrary, if k = 1, then

the KPB policy is identical to MET.

4.4.5 Gcµ

This scheduling policy is a variation of the generalized cµ (Gcµ) policy [34]. This

policy asymptotically minimizes delay costs. When a machine j requests a task, the

scheduler assigns it the longest waiting job from class i such that i ∈ arg maxiDi(t)µ
′
i,j

[3]. The use of this policy in desktop grids was first suggested in [3]. The optimality

36 4. Scheduling Schemes

of this policy is obtained under heavy loads (i.e. loads that approach 100%). On the

other hand under more moderate load, this policy can make bad scheduling decisions

especially with heterogeneous machines. This happens because the policy assigns an

arriving job to the fastest machine available without considering the execution rate of

this machine for different job classes. For example let us assume the following system:

α =
[

1 1.5
]

and µ =

[
2 2

2.1 10

]
.

If machine 2 becomes available and there are two jobs from each class, the sched-

uler will assign to it the job from Class 1. The greedy nature of this policy prevents

it from choosing a job from Class 2 which machine 2 can execute quickly.

Nonetheless, the Gcµ policy results in achieving significant performance improve-

ment over simpler scheduling schemes such as FCFS. This improvement is a result of

using the execution rates when making scheduling decisions that attempt to assign

jobs to machines which will execute these jobs faster than any of the other available

jobs.

4.4.6 LPAS DG

The Linear Programming Based Affinity Scheduling policy for Desktop Grids

(LPAS DG) was proposed in [3]. The description here is exactly as in the original

publication.

“The Linear Programming Based Affinity Scheduling policy for Desktop Grids

(LPAS DG) requires solving the following allocation Linear Problem (Andradóttir et

al. [5]) at each machine availability/unavailability event, where the decision variables

are λ and δi,j for i = 1, . . . , N , j = 1, . . . ,M . The variables δi,j are to be interpreted

as the proportional allocation of machine j to class i.

4. Scheduling Schemes 37

max λ

s.t.
M∑
j=1

δi,jµ
′
i,j ≥ λαi, for all i = 1, . . . , N, (4.2)

N∑
i=1

δi,j ≤ 1, for all j = 1, . . . ,M, (4.3)

δi,j ≥ 0, for all i = 1, . . . , N, and j = 1, . . . ,M. (4.4)

The left-hand side of (4.2)1 represents the total execution capacity assigned to class

i by all machines in the system. The right-hand side represents the arrival rate of

tasks that belong to class i scaled by a factor of λ. Thus, (4.2) enforces that the total

capacity allocated for a class should be at least as large as the scaled arrival rate for

that class. The constraint (4.3)2 prevents overallocating a machine and (4.4) states

that negative allocations are not allowed.

Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be an optimal solution to the

allocation LP. The allocation LP always has a solution, since no lower bound constraint

is put on λ. Let δ∗ be the machine allocation matrix where the (i, j) entry is δ∗i,j .

Whenever a machine becomes available or unavailable, the scheduler solves the

allocation LP to find {δ∗i,j} , i = 1, . . . , N , j = 1, . . . ,M . If a machine j becomes

unavailable, then aj = 0. In this case, δ∗i,j = 0 for i = 1, . . . , N . On the other

hand, if a machine j becomes available, aj is equal to the predicted CPU availability

for machine j during its next expected machine availability period. The scheduler

obtains values for aj using the CPU availability prediction techniques discussed in (the

previous section)3. Solving the allocation LP at each availability/non-availability event

represents how the LPAS DG policy adapts to the dynamics of machine availability.

Constraint (4.3) enforces the condition that the allocation of machine j should not

exceed its CPU availability. The use of aj represents how the LPAS DG policy adapts

to the dynamics of CPU availability.

The value λ∗ can be interpreted as follows. Consider an event in which a machine

becomes available or unavailable. Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be

an optimal solution to the allocation LP corresponding to the system just after the

occurrence of the event. Consider the system that only consists of the available subset

1µ′i,j is defined in Section 3.2.
2aj is defined in Section 3.2.
3Previous section in original paper. Please refer to Section 3.2 in this thesis.

38 4. Scheduling Schemes

of the M machines. Then, the value λ∗ can also be interpreted as the maximum

capacity of this partial system [4, 26].

The LPAS DG policy is defined as follows. When a machine j requests a task,

let Sj denote the set of task classes i such that δ∗i,j is not zero (Sj = {i : δ∗i,j 6= 0}).
Let Di(t) be the waiting time (sojourn time) of the head of the line class i task at

the time t of making the scheduling decision. The scheduler assigns machine j the

longest-waiting (head of the line) class i task such that

µi,jδ
∗
i,j > 0 and i ∈ arg max

i
µi,jDi(t).

Note that µi,j represents the effective execution rate for class i tasks at machine j

(µi,j = ajµ
′
i,j for i = 1, . . . , N , j = 1, . . . ,M). Note that the LPAS DG policy does not

use the actual values for {δ∗i,j}, beyond differentiating between the zero and nonzero

elements. Regardless, we must solve the allocation LP to know where the zeros are.

The allocation LP considers both the arrival rates and execution rates and their

relative values in deciding the allocation of machines to tasks. In addition, these allo-

cations are constrained by the CPU availabilities of the available machines. Consider

a system with two machines and two classes of tasks (M = 2, N = 2). The arrival and

execution rates are as follows:

α =
[

1 1.5
]

and µ =

[
9 5

2 1

]
.

Assume that all machines are dedicated (i.e., aj = 1, for all j = 1, . . . ,M). Solving

the allocation LP gives λ∗ = 1.5789 and

δ∗ =

[
0 0.6316

1 0.3684

]
.

Thus, when machine 1 requests a task, the scheduler only assigns it a class 2 task.

Machine 2 can be assigned tasks belonging to any class. Although the fastest rate is

for machine 1 at class 1, machine 1 is never assigned a class 1 task. Note that machine

1 is twice as fast as machine 2 on class 2 tasks and note that µ1,1
µ2,1

<
µ1,2
µ2,2

.

Now assume that machine 1 is fully dedicated and machine 2 is half-dedicated (i.e.,

a1 = 1 and a2 = 0.5). Solving the new allocation LP gives λ∗ = 1.3143 and

δ∗ =

[
0.0143 0.5

0.9857 0

]
.

In this case, machine 1 is assigned tasks from any class, but machine 2 is only assigned

class 1 tasks. Note that machine 1 is four times as fast as machine 2 on class 2 and

thus the LPAS DG policy avoids assigning a class 2 task to machine 2.

4. Scheduling Schemes 39

There could be many optimal solutions to the allocation LP. These optimal so-

lutions may have different numbers of zero elements in the δ∗ matrix. The following

proposition is a basic result in linear programming (the proof can be found in An-

dradóttir et al. [6]):

There exists an optimal solution to the allocation LP with at least NM +

1−N −M elements in the δ∗ matrix equal to zero.

Ideally, the number of zero elements in the δ∗ matrix should be NM + 1 − N −M .

If the number of zero elements is greater, the LPAS DG policy would be significantly

restricted in shifting workload between machines resulting in performance degradation.

Also, if the number of zero elements is very small, the LPAS DG policy resembles

more closely the Gcµ policy. In fact, if the δ∗ matrix contains no zeros at all, then the

LPAS DG policy reduces to the Gcµ policy.

The LPAS DG policy can be considered as an adaptive policy. As the policy only

involves solving an LP, it is suited for scenarios when the global state of the system

changes. For example, new machines can be added and/or removed from the system.

Also, parameters such as the arrival rates and execution rates may change over time.

On each of these events, one needs to simply solve a new LP and continue with the

new values.”

Chapter 5

System Design

The system considered in this thesis is purely a software system. New software com-

ponents were designed, implemented and tested and thereafter combined with existing

software to create the desired testing environment.

5.1 System Requirements Specification

This section discusses the requirements for the scheduling schemes testing environ-

ment. The requirements imply a set of attributes that the final product must achieve.

The requirements are used throughout the software life cycle.

5.1.1 Purpose

The purpose of this software system is to create a testing environment for scheduling

schemes. This environment should allow testers to program new scheduling schemes

and then test them.

5.1.2 User Classes and Characteristics

The expected users of this system are researchers in the scheduling field. The users

will use the system by testing built in scheduling schemes or adding new ones.

40

5. System Design 41

5.1.3 User Documentation

In addition to the software system, user documentation is provided. Four types of

documentation were prepared.

1. User manual explaining the functions of the software and how the software is

used to achieve these functions.

2. Expansion Documentation explaining how a tester can expand the system

by adding new features and layers to the system such as scheduling schemes or

probability distributions.

3. Javadoc Documentation that explains the classes, their attributes and their

methods.

4. Code Documentation explaining how the code works and why. This along

with the Javadoc documentation should help in future modifications.

5.1.4 Functional Requirements

A system’s functional requirements define its behaviour. The following is a list of the

functional requirements for the system implemented:

1. The system shall use the workload model defined in Section 3.1.

2. The system shall allow the addition of a new scheduling scheme by adding a

single Java class.

3. The system shall allow the addition of a new probability distribution by adding

a single Java class.

4. The system shall calculate the average waiting time (either overall or by job

class) 1.

1The waiting time is the difference between the time that a job is submitted and is sent to a
server.

42 5. System Design

5. The system shall calculate the average communication delay (either overall or

by job class) 2.

6. The system shall calculate the average response time (either overall or by job

class) 3.

7. The system shall allow the testers to define job classes.

8. The system shall contain an availability predictor module.

9. The system shall allow testers to impose heterogeneity on the servers.

10. The system shall allow testers to generate simulated failure traces according to

particular probability distributions.

11. The system shall allow the testers to monitor the system activities while in

operation (e.g what jobs are currently being executed or what jobs are timed-

out, etc.).

12. The system shall be able to generate the same set of jobs from previous tests

with the same probability distributions.

13. The system shall log all scheduling events for further study.

14. The system shall log all generations of jobs events for further study.

15. The system shall log all artificial failure events for further study.

16. The system shall log all actual exceptions for further study (e.g communication

errors and file exceptions).

2The communication delay is the difference between the time a job is sent to be executed and the
time the job begins execution. This delay happens mainly due to communication, but it could also
be caused by the software layer responsible for the process of distribution and execution of tasks.

3The response time is the difference between the time when a job is submitted and when a job
completes execution.

5. System Design 43

5.1.5 Platform Requirements

The system shall run on Mac OS X 10.4 and Mac OS X 10.5.

5.1.6 Maintainability Requirement

The system shall be implemented in a manner allowing for maintenance as well as

expansion.

5.1.7 Usability Requirements

The system shall have a Graphical User Interface (GUI) that allows the tester to set

up tests and monitor them. In addition, the system shall produce log files that can

be opened with spread sheet programs (e.g. Numbers or Excel).

5.2 Design

In this section the software design of the system is explained abstractly from a func-

tional point of view. After analysing the workload model and the requirements of the

system, the functions of the software were grouped into six main modules (see Figure

5.1). These modules are discussed in the following subsections.

5.2.1 Classes

The main classes are:

1. Job Generator : This module is responsible for generating jobs. As mentioned

in Section 3.1, there are N classes of jobs during a specific test. Every class

has a different arrival rate. Based on the arrival rate and the underlying inter-

arrival time distribution (e.g exponential) chosen by the tester, this module

generates jobs for the Mapper, simulating submission of jobs to the system.

At the implementation level, the Job Generator module was implemented as a

group of threads and a thread controller. Every job class has a thread which

44 5. System Design

M
ap

p
er

Se

rv
er

A
d
ju

st
er

E
xe

cu
te

r

Lo
gg

er

In
te

rf
ac

es
<

<
U

I>
>

Jo
b
 G

en
er

at
o
r

P
u
lle

r

M
ap

p
er

Ex
ec

ut
io
ns

 R
eq

ue
st
s

Jo
b
s

P
u
lli

n
g

Logging

A
d
ju

st
in

g

Jo
bs

 S
en

di
ng

R
eq

u
es

ti
n
g

P
ar

am
et

er
s

Se
tt

in
g

P
ar

am
et

er
s

Setting
Parameters

Se
tt

in
g

P
ar

am
et

er
s

Figure 5.1: Component Diagram of the system

5. System Design 45

knows the arrival rate and the inter-arrival time distribution of that class and

acts accordingly to submit jobs. The module is synthetic in the sense that its job

is to simulate users of the system. The Job Generator module was implemented

as a Java package named generating.

2. Adjuster : The purpose of this module is to impose some artificial properties

on some servers. This module is responsible for adjusting sent jobs to make

some servers slower or faster in executing them. For example, if server s can

actually execute a job from class A in n time units on average and the tester

wishes to increase the execution time for class A to be n′ units on average,

where n′ > n, then she should configure the Adjuster and set the execution rate

of that server to (1/n′). The Adjuster will then act accordingly, forcing the

average execution time to be n′ and not n for that specific server. This is used

by testers to configure homogeneous systems to be heterogeneous. This module

is also used to simulate failures events. This feature might be used to measure

the robustness of scheduling schemes when machines fail a certain percentage of

time. The module is artificial in the sense that it is used to impose an artificial

effect and has nothing to do with the mapping functionality. The Adjuster

module was implemented as a Java package named adjusting.

3. User Interface: Its functionality is receiving input from the tester and chang-

ing the parameters of the system according to the input. In addition to that,

it shows the results of the tests. Thus, this module is responsible for config-

uring the test at the initial stage and showing the results at the final stage.

The module is artificial in the sense that it has nothing to do with the map-

ping functionality. The Interface module was implemented as the Java package

interfacing.

4. Mapper : As its name indicates this module does the actual mapping. It re-

ceives submission requests from the Job Generator module and sends each task

to a specific server. The process of choosing the server depends on the map-

ping scheme deployed in that test. The mapping scheme typically needs to

46 5. System Design

know details about the state of the system (e.g the availability of the servers),

therefore, the Mapper module keeps track of all of this information. The state

information required depends on the mapping scheme itself. Because it is the

core of the system functionality, this module is the most complex in the system.

In addition to that, it is the module that will be extended by adding additional

scheduling schemes. It was designed and implemented to allow this extension.

An abstract base-class named MappingScheme was defined. This class has a

defined and unimplemented set of services (abstract methods). When a new

mapping scheme is to be added, a sub-class of the base-class MappingScheme

should be created. This new sub-class must implement the abstract services.

The way these services are implemented determines the new scheduling policy.

Please refer to Section 6.4 for details. The Mapper module was implemented as

the Java package mapping.

5. Logger: The functionality of the Logger is simple. It keeps a record of the

events that happen during the course of a test for further study. This module

was implemented as the Java package logging.

6. Puller : Unlike all of the other modules, this module is deployed at the servers.

Every server in the system should have this module running. The Puller is

responsible for maintaining availability information and sending it to the central

Mapper notifying it when servers are available. In addition, the Puller notifies

the Mapper when a job is completed. The frequency that the Puller monitors

the availability is defined by the Mapper. We call it system resolution time; it

is the time in minutes between two availability readings by the Puller. This

module was implemented as the Java package pulling.

7. Executer : This module is responsible for executing and managing the tasks on

assigned machines. This module was implemented as the Java package execut-

ing.

5. System Design 47

5.2.2 Module Interaction

In the previous subsection the modules in the system were discussed. These modules

need to communicate in order for the system to function. In this section the messages

between the modules are discussed. The interactions between modules are shown in

Figure 5.2.

The Interface module sends messages to both the Adjuster and the Job Generator.

The messages sent to the Adjuster are used to set the execution rates of jobs classes.

The messages sent to the Job Generator are used to define the job classes and their

arrival rates. Based on these parameters (job classes and their arrival rates) the Job

Generator module sends messages to the Mapper module to submit tasks.

The Mapper module sends messages to the Adjuster, Logger and the Puller. The

Adjuster module is consulted by the Mapper before issuing a job to a server, to see

what is the execution time expected for that job on that server. In addition to that

the Mapper informs the Logger of every action, so the Logger can keep a record of the

events happening in the system. Moreover the Mapper sends the jobs to the Executer

module to be executed.

The Puller module is responsible for sending availability information to the Map-

per. It also notifies the Mapper when a machine is ready to receive tasks.

The Executer module notifies the mapper when a job is done.

48 5. System Design

Job
Generator

Mapper

Interface Logger Executer

PullerAdjuster

Mapper Server

Actual functionalityArtificial functionality

Figure 5.2: Messages between modules.

Chapter 6

System Implementation

This section discusses the implementation phase of the software life cycle.

6.1 Introduction

The software system was implemented in the Java programming language, which was

chosen for several reasons. The main reasons were that it is platform independent

so testers can use it on any platform they desire, and it is a relatively popular pro-

gramming language. In addition, Java fits in the object oriented paradigm used in

the development of the system. The Eclipse development framework was used for

implementation.

After the initial design (Section 5.2), several iterations of refinements took place.

After every refinement, a lower level model (in terms of abstraction) was produced.

When the last level was reached, each abstract class defined in Figure 5.1 ended up

being implemented as a Java package.

The following section (Section 6.2) discusses some related Java topics. Section

6.3 discusses the packages of the software. Following that, Section 6.4 explains how

to add new mapping schemes and Section 6.5 explains how to add a new probability

distribution. Finally, Section 6.6 touches upon issues considered in the design and

development phases.

49

50 6. System Implementation

6.2 Java Related Background

In this section the Java delegation event model and the abstract classes concept are

discussed.

6.2.1 Java Delegation Event Model

In [47] the Java delegation event model is described as follows:

Event types are encapsulated in a class hierarchy rooted at java.util.EventObject.

An event is propagated from a “Source” object to a “Listener” object by invoking a

method on the listener and passing in the instance of the event subclass which defines

the event type generated. A Listener is an object that implements a specific EventLis-

tener interface extended from the generic java.util.EventListener. An EventListener

interface defines one or more methods which are to be invoked by the event source in

response to each specific event type handled by the interface.

An Event Source is an object which originates or fires events. The source defines

the set of events it emits by providing a set of set<EventType>Listener (for single-

cast) and/or add<EventType>Listener (for multi-cast) methods which are used to

register specific listeners for those events.

In an AWT [Abstract Window Toolkit] program, the event source is typically a

GUI component and the listener is commonly an “adapter” object which implements

the appropriate listener (or set of listeners) in order for an application to control the

flow/handling of events. The listener object could also be another AWT component

which implements one or more listener interfaces for the purpose of hooking GUI

objects up to each other.

6.2.2 Abstract Classes

An abstract class in Java is a class that contains an abstract method. Abstract meth-

ods are method signatures without implementations. The implementation is provided

by the subclasses. Any class that contains abstract methods must be declared ab-

stract. A concrete class is a class without any abstract methods (i.e. all of its methods

are implemented). Abstract classes are used to represent abstract concepts that can

have several specific instances (concrete instances). For example a mapping scheme

6. System Implementation 51

is an abstract concept, where the MET mapping scheme is a specific instance of a

mapping scheme.

6.2.3 Polymorphism and Dynamic Binding

An object of a subclass in Java can be used by any method written to work with

an object of its superclass. This feature is called polymorphism. Dynamic binding is

binding instances of objects of subclasses to objects of their superclass. For example

Fruit f = new Apple();

f.eat();

when executing f.eat() the eat() method in the Fruit class is executed.

6.3 Packages

The source code of the system is constructed from eight packages resembling the

seven modules of the first abstract design and one helper package. These packages

are adjusting, executing, generating, interfacing, logging, mapping, pulling and the

helper package probabilityDist. These packages will be discussed in the remainder of

this section.

6.3.1 adjusting

This package is constructed from a single class. This class is called Adjuster and

contains three methods. The first method is invoked by the active mapper to deter-

mine the adjustments to be done on jobs before sending them. The Adjuster uses

information submitted by the user to perform these adjustments.

6.3.2 executing

The executing package has two classes. The abstract class Executer is basically a def-

inition of services that any concrete execution layer should offer. The second class in

52 6. System Implementation

this package is ExecuterViaXgird, which is a concrete subclass of the abstract super-

class Executer. It is implemented using the Mac OS X dependent Xgrid technology.

Some example services that a concrete subclass of Executer should implement are:

submitLoopJob(), getDateSubmitted(), getDateStarted(). For instance, the submit-

LoopJob() method is implemented in ExecuterViaXgird by sending a specific process

using the xgrid command:

xgrid -h hostname -p password -job submit loopProcess arg1 arg2

where hostname is the target machine address, password is the Xgrid password for

that machine, loopProcess is an executable process and arg1 and arg2 are argu-

ments for that process. The current implementation uses Xgrid technology for the

jobs submission and execution management. However, the Xgrid technology can be

substituted with another software layer. This can be done by implementing a new

concrete class of the abstract class Executer.

6.3.3 generating

This package contains two classes. The first one is JobsGenerator. Each instance

is responsible for the generation of jobs of one class according to some probability

distribution. One instance of this class is associated with two instances of probability

distribution classes (e.g. the exponential and uniform distributions). It uses one of

them to calculate the periods between generation events to maintain an arrival rate

under a specific distribution, and uses the other object to calculate the length of the

jobs to create a variation in the length of jobs from the same class. After creating the

jobs, they are sent to the active mapper instance. The second class in this package

is GeneratorsController. The generators controller is responsible for controlling all of

the instances of JobsGenerators. It initializes, starts and stops them.

6.3.4 interfacing

All the graphical user interface classes are contained in this package. The Java Swing

library is used in this implementation. All other packages are completely independent

6. System Implementation 53

Figure 6.1: A screen shot showing a server table (left) and a failure trace view (right).

of this package. A Model View Controller (MVC) design pattern is used. MVC is

a software design pattern used when designing user-interface based software. In an

MVC panel, data classes (or models) are graphically represented by graphical classes

(or views) and the data classes are manipulated and controlled by classes of a third

type (controllers). Sometimes the controller and the view are combined in one class

which is able to view and control the data model. Classes in this package represent

the view and controller of data classes from other packages. In addition, the Java

Event Delegation mechanism described earlier is used in this package.

This package contains more than 15 classes. One such class is named JobClass-

esTableJPanel. This class contains a table that provides a view of the job classes in

the system. Through this view the user can change properties of any job class in the

table. Other similar classes are ServersTableJPanel and FailureTraceTable, which in

turn provide views of and control the servers’ table and failure traces respectively

(see Figure 6.1).

54 6. System Implementation

Job Class Iterations Date
Task generated from class: 2 iterations: 1982 Sun May 25 17:16:24 EDT 2008

Task generated from class: 2 iterations: 2047 Sun May 25 17:16:32 EDT 2008

Task generated from class: 2 iterations: 2038 Sun May 25 17:16:44 EDT 2008

Task generated from class: 2 iterations: 1964 Sun May 25 17:18:13 EDT 2008

Task generated from class: 2 iterations: 1970 Sun May 25 17:18:25 EDT 2008

Task generated from class: 1 iterations: 981 Sun May 25 17:19:08 EDT 2008

Task generated from class: 1 iterations: 99 Sun May 25 17:20:07 EDT 2008

Task generated from class: 1 iterations: 101 Sun May 25 17:20:52 EDT 2008

Task generated from class: 2 iterations: 202 Sun May 25 17:21:02 EDT 2008

Task generated from class: 2 iterations: 203 Sun May 25 17:21:17 EDT 2008

Task generated from class: 1 iterations: 102 Sun May 25 17:21:20 EDT 2008

Task generated from class: 2 iterations: 195 Sun May 25 17:21:24 EDT 2008

Task generated from class: 2 iterations: 201 Sun May 25 17:21:34 EDT 2008

Task generated from class: 2 iterations: 200 Sun May 25 17:21:39 EDT 2008

Task generated from class: 1 iterations: 990 Sun May 25 18:19:17 EDT 2008

Task generated from class: 1 iterations: 1022 Sun May 25 18:19:22 EDT 2008

Task generated from class: 1 iterations: 1004 Sun May 25 18:20:32 EDT 2008

Task generated from class: 1 iterations: 979 Sun May 25 18:20:56 EDT 2008

Task generated from class: 2 iterations: 2023 Sun May 25 18:36:33 EDT 2008

Task generated from class: 2 iterations: 1959 Sun May 25 18:38:31 EDT 2008

Task generated from class: 2 iterations: 2046 Sun May 25 19:00:00 EDT 2008

Task generated from class: 2 iterations: 2008 Sun May 25 19:00:08 EDT 2008

Task generated from class: 1 iterations: 1001 Mon May 26 12:23:38 EDT 2008

Task generated from class: 1 iterations: 998 Mon May 26 12:24:02 EDT 2008

Task generated from class: 2 iterations: 1977 Mon May 26 12:24:08 EDT 2008

Figure 6.2: A log file opened in Numbers software

6.3.5 logging

The classes of this package are responsible for the operation of logging system events.

This package can be modified to use different schemes of storage. For simplicity and

practicality the current implementation uses files. The text files produced can be

opened and processed using spread sheet applications. This feature allows the tester

to further study the results of their tests (Figure 6.2).

This package contains three classes. The class Event represents a generic event.

The class Logger is responsible for communication with the storage layer (e.g file

system or DBMS) and storing events with their time stamps. The third class is

named ServersReader and it can restore information about Servers objects stored in

a file. This allows testers to maintain a list of servers in a text file.

6. System Implementation 55

6.3.6 mapping

This package has several classes. The following is a partial list:

1. AvailabilityServer is a server that keeps listening (by default on port 37933)

for availability updates sent by machines in the grid and consequently modifies

the mapper information.

2. CompletionServer is a class that represents a server that keeps listening (by

default on port 37931) for notifications of job completion and consequently

modifies the mapper information.

3. TimeoutThread. A thread from this class is responsible for sending a notifi-

cation to the mapper when a time-out occurs. It keeps track of all sent jobs. If

a sent job was not completed by a certain time this thread will announce this

job as Timed Out. This feature can be turned off.

4. MappingScheme is an abstract class. It contains some abstract methods that

must be implemented by any concrete mapping scheme. More details on this

class can be found in Section 6.4.

5. Mapper is a concrete class. One instance of this class co-operates with an in-

stance of a concrete subclass of MappingScheme to perform the mapping opera-

tion. The Mapper class performs all of the general operations of mapping such as

receiving a job and later sending it to a machine. The concrete MappingScheme

(e.g. LPAS DG) on the other hand, performs the mapping scheme-specific op-

erations such as the actual scheduling and how time-outs are handled. The

Mapper does not invoke different methods for each mapping scheme. It invokes

the method defined in the abstract class MappingScheme and the the proper

method is chosen using the polymorphism and dynamic binding features.

6. LPAS DG MS is a concrete class of MappingScheme that implements the

LPAS DG mapping scheme.

56 6. System Implementation

Adjuster jg:JobGenerator m:Mapper lp:LPAS_DG_MS t:LPAS_DG_TH

jg.generateJob()

m.requestJob(job) m.addJob(job)

m.enqueue(job)

lp.mapjob(job) lp.enqueue(job)

lp.sendJobForServer(sID, job)

lp.dequeue(job)

m.sendJob(sID, job)
Adjuster.CheckIfTheServerHasFailed()

if ok dequeu(job)
and sendToServer()

if not ok, notifyLP()

Figure 6.3: Sequence diagram showing communications when a job is sent and
mapped.

7. LPAS DG TH is a thread that is part of the LPAS DG implementation. This

thread keeps checking the queues of jobs and sends jobs to an object of the

LPAS DG MS class. The thread determines the order in which the available

servers are used in the mapping process. In other words, this thread is responsi-

ble for choosing a server from the pool of available servers and notifies an object

of class LPAS DG MS which in turn chooses a job to be sent to that server.

In Figure 6.3 the communications between objects of classes of this package during

the process of mapping a job are shown.

6.3.7 pulling

The objects of this package’s classes will run on the machines and not the mapper.

This package is constructed from more than 12 classes. The following is a list of the

6. System Implementation 57

important classes in this package:

1. CompletionAnnouncer is a class from which every machine has one object.

That object is responsible for notifying the mapper when the execution of a

job is completed and hence it needs to know the address of the mapper. The

mapper in turn notifies this object when a job is sent to its machine.

2. CPU Eater is used to make machines busy. In some tests the tester wishes to

simulate some availability conditions. This thread is able to make one core in

a CPU busy to a certain percentage determined by the user.

3. AvailabilityManager is a thread responsible for measuring CPU usage or

CPU availability on machines and then logging and sending the results to the

mapper. It is part of an availability prediction module developed as part of the

environment.

4. AvailabilityLogger is used by the AvailabilityThread class to log the avail-

ability readings.

6.3.8 probability distribution

This package has the classes related to probability distributions. It contains the

following classes:

1. ProbabilityDist is an abstract class with one abstract method getNextValue().

This method should be defined in a manner such that each invocation produces

a sample from a certain probability distribution.

2. ExponentialDist is a concrete subclass of ProbabilityDist that implements an

exponential distribution.

3. UniformDist is a concrete subclass of ProbabilityDist that implements a uni-

form distribution.

58 6. System Implementation

6.4 Adding New Scheduling Policies

To add a mapping scheme, a new class must be added to the package mapping. This

class must be concrete and must extend the abstract class MappingScheme, thus it

must implement the methods of the abstract class MappingScheme. The methods

are:

1. public abstract void startMappingScheme(). In this method, initializa-

tion operations are defined. For instance, if the mapping scheme depends on a

thread, the thread is initialized and started.

2. public abstract void stopMappingScheme(). In this method, the program-

mer should define operations that stop the execution of the system processes

(e.g mapping and generation). This can be useful if the system execution is

wished to be restarted after stopping it.

3. protected abstract void mapJob(Job job). The implementation of this

method determines the mapping scheme. It is invoked by the mapper object.

The job is sent to the active MappingScheme concrete object (e.g. the LPAS DG

object or the MET object). This object then makes the mapping decision

according to the appropriate policy.

4. public abstract void handleJobTimeOut(long jobID). The implementa-

tion of this method determines what should happen when a job times out. One

way of handling a time-out for instance, is to resubmit the timed-out job. This

way was chosen for the implemented schemes.

5. public abstract void serverIsDown(int serverID) The implementation of

this method determines what should happen when a server goes down. For

instance, the LPAS DG policy re-solves the LP allocation.

6. public abstract void serverIsUp(int serverID) The implementation of this

method determines what should happen when a server becomes up after being

down. For instance, the LPAS DG policy re-solves the LP allocation.

6. System Implementation 59

Three mapping schemes are implemented. These are LPAS DG, Gcµ and FCFS.

Classes are named LPAS DG MS, Gcu MS and FCFS MS. The convention is to ap-

pend the name of the mapping scheme with “ MS”. These implementations can be

found in the source code on the attached Compact Disc (Appendix A).

6.5 Adding New Probability Distributions

Adding a new probability distribution requires adding a new concrete class to the

probabilityDist package that extends the abstract class ProbabilityDist. The single

method that has to be implemented is the method with the signature public abstract

double getNextValue(). For instance to implement the exponential distribution the

method is implemented as follows:

return (-1*Math.log(Math.random()))/this.getLambda();

or

−log(r)/λ (where r is a random number in [0, 1) and 1/λ is the mean)

Invoking the method above will produce a sample from an exponential distribution

with mean 1/λ. The exponential and uniform distributions were implemented in the

ExponentialDist and UniformDist classes respectively. These implementations can

be found in the source code on the attached Compact Disc (Appendix A).

6.6 Considerations in Design and Development

During the first phase of development the problem domain was analysed and the

workload model of the theoretical scheme, which the system is supposed to test,

was studied. Upon understanding the problem domain, design requirements were

determined. Different aspects were considered, each of which is discussed in detail in

the reminder of this section.

Maintainability - A software system is said to be maintainable if it can be modi-

fied to adopt new requirements or to fix errors in a fluent manner. The maintainability

60 6. System Implementation

aspect was a prime consideration. The main reason for this is that the requirements

of our system are dynamic. The workload and the problem domain are well defined

for the current research, however, the model may change in the future. Therefore,

classes were designed with future additions in mind. The whole architecture of the

system is suitable for maintenance and adding new features. In addition, the code

was well documented using Javadoc [29]. (Javadoc is a tool for generating API doc-

umentation in HTML format from comments in source code.) Moreover, the source

code was extensively commented.

Modularity - Every software system has several functionalities. Building a soft-

ware system involves designing the internal modules of the system and defining how

these modules interact. Generally speaking, each component should be independent

of the other components to the largest extent possible. However, these components

have to know how to communicate with each other and therefore they are not fully in-

dependent. The less dependent the modules are, the easier the system is to maintain.

In order to achieve high modularity, each component was designed to have a specific

and defined functionality. Each system component is implemented as a Java package

and each package can access specific services from other packages. As an example all

the mapping functionality is encapsulated in the Mapper module, whereas the logging

functionality is encapsulated in the Logger module.

Extensibility - Extensibility is the ability to extend the system’s features or

functionality. The system was designed with extensibility at the top of the design

requirements list. As previously mentioned, the system’s main purpose is testing

scheduling schemes. To do this, the system will support some scheduling schemes

such as LPAS DG. Adding additional scheduling schemes requires only inheriting

an abstract class and implementing a set of methods. More details were given in

Section 6.4. For example, the policies LPAS DG, Gcµ and FCFS were added using

the method described in Section 6.4.

Security - The security aspect of the system was not a big concern in the design

process, since the system will run in an academic environment. However, that does

not mean that the system is not secure. No one can request jobs from the system

6. System Implementation 61

without a password set in the configuration phase. For the purpose of testing, this

is what really matters, that our Xgrid agents (servers) will not be receiving jobs to

work on from outside entities.

Compatibility - The testing environment is to be installed on departmental

machines. The system is constructed from two main software components. The

main one is written in Java thus guaranteeing compatibility on different platforms.

The other component (Xgrid technology) is Mac OS dependent. We decided that the

system should work on both Mac OS X 10.4 (Tiger OS) and Mac OS X 10.5 (Leopard

OS) and the system was tested on both operating systems. We expect that the testing

environment will work well on future Apple platforms, but we cannot guarantee it.

However, if major modifications were introduced to the Xgrid system, only one layer

of our system would need to be modified, the Xgrid dependent layer.

Robustness - A software application is robust if it is able to tolerate unpre-

dictable or invalid inputs or conditions. To achieve robustness, at the design level we

tried to eliminate unpredictable conditions by simplifying messages between different

modules. At the implementation level we always tried to check for different boundary

conditions. In addition, the Java error handling model was extensively employed to

catch exceptions. For example, all communications in the system were subject to

time-out exceptions and the Xgrid system messages were always verified and checked,

with an exception raised in case of a problem. Moreover, most of the system compo-

nents are multi-thread based. As a result, every data structure was chosen from the

java.util package to be thread safe, meaning that synchronization methods are used

to guarantee the integrity of the thread-accessed data structures, thus protecting the

integrity of the system state. In addition, no deprecated unsafe threads methods were

used. Finally, it is worth mentioning that the Java programming language is robust.

As a matter of fact, robustness of software created by Java is a main concern for Java

designers [25]. The Xgrid technology is also robust and it is being used in large scale

projects such as the Xgrid@Stanford project [49].

Chapter 7

Analysis

7.1 Introduction

In this chapter we will discuss some experiments conducted on our testing environ-

ment and will compare them to results obtained from the simulation tool used in [3].

Each of the following sections discusses one setting of servers and job classes and the

experiments conducted using this setting. Although the description in each section

may seem a bit repetitive, we have described each experiment in detail so that the

reader can read the results of one experiment independently of the remainder of the

chapter.

As in Section 3.1, α is the arrival rate vector of job classes, where the ith element

αi, is the arrival rate of job class i. Moreover, the execution rate that a machine j

can execute a job from class i is denoted by µi,j. The availability of machine j is

donated by aj and the actual execution rate is given by µ′i,j = µi,jaj. In addition, µi

is a vector that represents the execution rates for a particular job class, with the jth

element in this vector being µi,j. Finally, µ is the matrix constructed by all execution

rate vectors, where entry (i, j) is µi,j.

The metrics used in the simulations and experiments are the average waiting time

and the average completion time (response time). For the experimental part we also

used the average communication delay.

62

7. Analysis 63

As a reminder, the waiting time is the difference between the time that a job is

submitted and is sent to a server. The response time is the difference between the

time a job is submitted and the time it completes execution. The communication

delay is the difference between the time a job is sent to be executed and the time it

begins execution. This delay occurs mainly due to communication delays, but it could

also be caused by the software layer responsible for the distribution and execution of

the tasks.

Machine heterogeneity refers to the average variation in the rows of the execution

matrix µ. Similarly, job heterogeneity refers to the average variation of the columns.

Based on this and following [10], we define the following categories for heterogeneity:

• High job heterogeneity and high machine heterogeneity (HiHi)

• High job heterogeneity and low machine heterogeneity (HiLo)

• Low job heterogeneity and high machine heterogeneity (LoHi)

• Low job heterogeneity and low machine heterogeneity (LoLo)

Every setting from the following belongs to one of the above categories.

7.2 Setting HiHi

This setting was constructed from 6 machines and 4 job classes. The LPAS DG, Gcµ

and FCFS policies were simulated and tested on this setting.

• Execution rates are shown in Table 7.1. M1 to M6 are machine 1 to machine 6.

Class M1 M2 M3 M4 M5 M6

1 2.0 2.0 2.0 2.0 2.0 2.0
2 1.0 20.0 3.7 7.1 2.4 8.7
3 1.0 20.0 9.4 3.7 7.2 2.7
4 1.0 20.0 2.8 5.9 4.4 6.3

Table 7.1: Execution Rates of Setting A

64 7. Analysis

• The arrival rates of the job classes were

α =
[

2.25 4.50 7.20 12.60
]
.

7.2.1 Experiment 1

This experiment was conducted on Setting HiHi with the following parameters:

• All machines were dedicated (aj = 1.0, ∀j).

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.2. The metric used in the table is the mean response

time. The confidence level was 95%. The confidence intervals are shown between

brackets in the table.

Class LPAS DG Gcµ FCFS

1 (0.56, 0.57) (0.66, 0.67) (1.30, 1.33)
2 (0.33, 0.34) (0.26, 0.26) (0.99, 1.02)
3 (0.18, 0.18) (0.25, 0.25) (0.99, 1.02)
4 (0.11, 0.11) (0.27, 0.27) (0.99, 1.02)

Overall (0.20, 0.21) (0.30, 0.30) (1.01, 1.05)

Table 7.2: Results of simulation 1

Our testing environment was used to conduct the experiment, and the results are

shown in Table 7.3. At the time when the experiment was stopped the actual arrival

rates of job classes were within 5% of the assumed arrival rates α. The LPAS DG

test took 90 minutes (45 time units), while the Gcµ and FCFS tests took 10.5 hours

(315 time units) and 21 hours (253 time units), respectively.

7. Analysis 65

Class LPAS DG Gcµ FCFS

1 0.58 0.78 1.27
2 0.34 0.29 1.01
3 0.22 0.21 0.98
4 0.17 0.31 0.97

Overall 0.24 0.34 1.00

Table 7.3: Results of experiment 1

Discussion

In Figure 7.1 a comparison between the results of the simulation and the results of

the experiment is shown. The left side of the figure shows the simulation results,

whereas the right side shows the experimental results. The results were similar. All

of the average response times obtained by the experiment were within 0.06 time units

of the corresponding entries in the simulation table.

The results of this experiment verified the results of [3], that is the superiority

in the performance of the LPAS DG policy over the Gcµ and FCFS policies. Both

the simulation and the experimental results show an increase of performance of 4 - 5

times when using the LPAS DG policy instead of the FCFS policy in heterogeneous

environments. These results also show that the abstract model assumed by [3] is

reasonable and that the unmodeled overhead of LPAS DG in this case had minimal

impact, since the LP allocation problem was solved only once and the communication

delay was not large (since the experiment was conducted in the same Local Area

Network (LAN)).

7.2.2 Experiment 2

This experiment was conducted on Setting HiHi with the following parameters:

•

aj =

{
1.0 if 1 ≤ j ≤ 3

0.5 if 4 ≤ j ≤ 6

• This setting included no machine failures.

66 7. Analysis

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.57 0.67 1.32

0.34 0.26 1.01

0.18 0.25 1.01

0.11 0.27 0.99

0.21 0.3 1.01

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.58 0.78 1.27

0.34 0.29 1.01

0.22 0.21 0.98

0.17 0.31 0.97

0.24 0.34 1.00

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

TestChart

0

0.45

0.90

1.35

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.45

0.90

1.35

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.1: Experiment 1 results.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.4. The metric used here is the mean response time.

The confidence level was 95%. FCFS is not stable for this setting and parameters.

Class LPAS DG Gcµ FCFS

1 (0.97, 0.98) (1.10, 1.11) N/A
2 (0.22, 0.22) (0.42, 0.42) N/A
3 (0.27, 0.27) (0.36, 0.36) N/A
4 (0.16, 0.16) (0.44, 0.44) N/A

Overall (0.27, 0.27) (0.47, 0.47) N/A

Table 7.4: Results of simulation 2

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.5.

LPAS DG Test. This test took 6.5 hours (130.7 time units). The actual arrival

rate was

α′ =
[

2.17 4.60 7.19 11.95
]
,

which is within 5% of the desired arrival rate. The actual execution rates are given

7. Analysis 67

Class LPAS DG Gcµ FCFS

1 0.99 1.51 N/A
2 0.37 0.59 N/A
3 0.29 0.50 N/A
4 0.43 0.59 N/A

Overall 0.42 0.64 N/A

Table 7.5: Overall results of Experiment 2

in the following table:

Class M1 M2 M3 M4 M5 M6

1 1.96 N/A N/A 0.96 0.94 N/A
2 N/A 18.04 N/A 3.27 N/A 3.90
3 N/A N/A 8.70 N/A 3.30 N/A
4 N/A 18.09 N/A N/A N/A N/A

Table 7.6: Execution Rates in LPAS DG test in Experiment 2

Gcµ Test. This test took 3.9 hours (81.7 time units). The actual arrival rate

α′ =
[

2.22 4.90 7.12 12.57
]
,

which is within 10% of the actual desired rate. The actual execution rates are given

in the following table:

Class M1 M2 M3 M4 M5 M6

1 1.92 2.05 2.03 0.90 0.94 0.92
2 1.01 18.04 3.66 3.23 1.10 3.93
3 0.98 17.92 8.70 1.68 3.30 1.27
4 1.01 18.09 2.80 2.72 2.00 2.84

Table 7.7: Execution Rates in Gcµ test in Experiment 2

FCFS Test

This test took 17.7 hours (500 time units). The actual arrival rate was

α′ =
[

2.24 4.13 6.84 12.41
]
,

68 7. Analysis

which is within 10% of the desired arrival rate.

The experiment showed that this policy is unstable. Both the queue of waiting

jobs and the response time were growing with time. Figure 7.2 shows the relation

between time (in time units) and response time (in time units).

0

22.5

45.0

67.5

90.0

32 59 102 123 295 500

Response Time vs Time

Figure 7.2: Experiment 2, FCFS test results.

Discussion

The FCFS policy test on both the simulation tool and the testing environment showed

that the FCFS policy is unstable. As such, the LPAS DG policy proves to be superior.

It is worth noting though that since the actual processing rates (Table 7.6 and Table

7.7) are slower than the assumed processing rates (Table 7.1), the response times of

the experiment were larger than those of the simulation.

Additionally, the performance of LPAS DG in processing class 4 was much slower

in the test than in the simulation. We believe that the reason behind this is that

according to the δ∗ matrix (Section 4.4.6), which results from solving the LP, class

4 jobs can only be processed by machine 4. The actual rate µ̄4,4 was 18.09, whereas

the desired µ4,4 was 20. The fact that only one machine can execute jobs from this

class makes the performance of the policy highly dependent on that machine. In

this experiment the machine could not reach the ideal execution rate, which resulted

in poor performance for that class. The fact that only one or few machines can

7. Analysis 69

execute particular job classes makes the performance of the policy very sensitive to

the performance of these machines. If these machines under-performed (due to over

estimation of execution rates or machine failures), the performance of the policy will

deteriorate. In large grids however, these groups are constructed from a large number

of machines which should attenuate this effect. Nevertheless, we think that this

downside of the LPAS DG policy warrants further examination.

HH_aj

0

0.377

0.755

1.132

1.509

Class 1 Class 2 Class 3 Class 4 All

Simulation

LPAS_DG Gcu

0

0.377

0.755

1.132

1.509

Class 1 Class 2 Class 3 Class 4 All

MUSST

Figure 7.3: Experiment 2 results.

7.2.3 Experiment 3

This experiment was conducted on Setting HiHi with the following parameters:

• aj =1.0 (for all j)

• Each machine fails at the rate 0.05 per time-unit and the mean fault time is 2

time-units. The periods were exponentially distributed.

Results

The simulations were conducted using the simulation software used in [3] and the

results obtained are shown in Table 7.8. The metric used here is the mean response

70 7. Analysis

time. The confidence level was 95%. FCFS is not stable for this setting and parame-

ters.

Class LPAS DG Gcµ FCFS

1 (0.61, 0.61) (0.73, 0.73) N/A
2 (0.35, 0.35) (0.28, 0.28) N/A
3 (0.19, 0.20) (0.27, 0.27) N/A
4 (0.13, 0.13) (0.30, 0.30) N/A

Overall (0.23, 0.23) (0.32, 0.33) N/A

Table 7.8: Results of simulation 3

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.9. At the time when the LPAS DG, Gcµ and the FCFS tests were

stopped the actual arrival rates of job classes were within 2%, 8% and 5% respectively

of the assumed arrival rates. The LPAS DG test took 12.9 hours (258.7 time units),

while Gcµ took 3.8 hours (56.4 time units).

Class LPAS DG Gcµ FCFS

1 0.61 0.77 N/A
2 0.45 0.30 N/A
3 0.20 0.26 N/A
4 0.15 0.30 N/A

Overall 0.25 0.33 N/A

Table 7.9: Overall results of experiment 3

The experiment showed that FCFS is unstable. Both the queue of waiting jobs

and the response time were growing with time. Figure 7.2 shows the relation between

time (in time units) and response time (in time units).

Discussion

In Figure 7.5 a comparison between the results of the simulation and the results of

the experiment is shown. The left side of the figure shows the simulation results,

whereas the right side shows the experimental results. The results were similar. All

7. Analysis 71

0

3.75

7.50

11.25

15.00

10 43 57 73 87 107 120

Response Time vs Time

Figure 7.4: Experiment 3, FCFS test results.

the response times obtained by the experiment were within 0.1 time units of the

corresponding entries in the simulation table.

The results of this experiment verified the results of [3], that is the superiority in

the performance of the LPAS DG policy over the Gcµ and FCFS policies.

These results also show that the abstract model assumed by [3] is reasonable and

that the impact of the overhead of LPAS DG in this case was minimal since the LP

allocation problem was solved only once. In addition, the communication delay was

minimal since the communications between the machines happened in the same LAN.

7.2.4 Experiment 4

This experiment was conducted on Setting HiHi with the following parameters:

•

aj =

{
1.0 if 1 ≤ j ≤ 3

0.5 if 4 ≤ j ≤ 6

• Each machine fails at the rate 0.05 per time-unit and the mean fault time is 2

time-units. The periods were exponentially distributed.

72 7. Analysis

LPAS_DG Gcu FCFS

Class 1

Class 2

Class 3

Class 4

All

0.61 0.73

0.35 0.28

0.2 0.27

0.13 0.3

0.23 0.32

LPAS_DG Gcu FCFS

Class 1

Class 2

Class 3

Class 4

All

0.61 0.77

0.45 0.30

0.20 0.26

0.16 0.30

0.26 0.33 0

0.2

0.4

0.6

0.8

Class 1 Class 2 Class 3 Class 4 All

Simulation

LPAS_DG Gcu

0

0.2

0.4

0.6

0.8

Class 1 Class 2 Class 3 Class 4 All

MGST

Figure 7.5: Experiment 3 results.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.10. The metric used here is the mean response time.

The confidence level was 95%. FCFS is not stable for this setting and parameters.

Class LPAS DG Gcµ FCFS

1 (1.10, 1.11) (1.26, 1.27) N/A
2 (0.30, 0.31) (0.50, 0.51) N/A
3 (0.32, 0.32) (0.42, 0.42) N/A
4 (0.26, 0.27) (0.53, 0.53) N/A

Overall (0.35, 0.36) (0.56, 0.56) N/A

Table 7.10: Results of simulation 4

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.11. At the time when the LPAS DG, Gcµ and the FCFS tests were

stopped the actual arrival rates of job classes were within 7%, 5% and 5% respectively

of the desired arrival rates. The LPAS DG test took 14.4 hours (309 time units), while

the Gcµ took 2 hours (40 time units). The experiment showed that FCFS is unstable.

Both the queue of waiting jobs and the response time were growing with time. Figure

7.6 shows the relation between time (in time units) and response time (in time units).

7. Analysis 73

0

7.5

15.0

22.5

30.0

20 40 60 80 100 120

Response Time vs Time

Figure 7.6: Experiment 4, FCFS test results.

Class LPAS DG Gcµ FCFS

1 1.03 1.30 N/A
2 0.50 0.55 N/A
3 0.46 0.41 N/A
4 1.36 0.51 N/A

Overall 0.94 0.56 N/A

Table 7.11: Overall results of experiment 4

Discussion

The difference between the response time of class 4 in the simulation and the experi-

ment is due to two factors.

The first one is the effective rate in the experiment is less than that assumed

by LPAS DG. The second and more important factor is that the delay between the

completion time and notification time of completion is large compared to the execution

time. This delay is usually negligible, but in this case it is large compared to the

execution time. Jobs from class 4 are exclusive to machine 4 and the processing rate

of machine 4 is large (20 jobs per time unit or an execution time of 0.05 time units).

In the test, the time unit was 3 minutes, thus the processing time of this machine for

class 4 was 9 seconds (1 / µ4,4 = 9 seconds). The actual processing rate was 10-11

seconds, add to that the delay time between the completion time and the notification

74 7. Analysis

time which was approximately 2 seconds (more than 10% of the desired processing

time). This results in enlarging the actual effective execution rate by approximately

44%.

The entry (4,4) in the δ∗ matrix was .936 and the ρ∗ value was .673 which mean

that this machine should be busy approximately 67% of time when it is up (without

failures) in ideal conditions. Its busy time is divided between class 2 and class 4 jobs

in a ratio of 6:94. Taking the effective execution rate into account the load on that

machine rises to approximately 97% without failures. If the failure rate was taken

into consideration the load would exceed 100% or equivalently the effective processing

rate of the machine becomes slower than the arrival rate of the class 4, which results

in class 4 becoming unstable. We believe that one class being exclusive to one job

class might give higher than desired sensitivity to system parameters.

In addition, the response times of class 2 and class 3 are higher than the simulation,

as the unavailability of machine 4 meant the other machines became more highly

loaded.

The Gcµ performance in this case was better than the LPAS DG policy, indicating

that it suffers less from the sensitivity problem.

7. Analysis 75

LPAS_DG Gcu FCFS

Class 1

Class 2

Class 3

Class 4

All

1.1 1.26

0.3 0.5

0.32 0.42

0.26 0.53

0.36 0.53

LPAS_DG Gcu FCFS

Class 1

Class 2

Class 3

Class 4

All

1.03 1.30

0.50 0.55

0.46 0.41

1.36 0.51

0.94 0.56 0

0.315

0.630

0.945

1.260

Class 1 Class 2 Class 3 Class 4 All

Simulation

LPAS_DG Gcu

0

0.3393

0.6786

1.0179

1.3571

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG

Class 1

Class 2

Class 3

Class 4

All

1.1 1.03333333333 186

0.3 0.42777777778 77

0.32 0.40555555556 73

0.26 0.51492777778 92.687

0.36

Figure 7.7: Experiment 4 results.

7.3 Setting LoHi

This setting was constructed from the category LoHi, and had 21 machines and 4 job

classes. There were seven groups of machines. Members of the same group have the

same execution rates. Machines in group 1 are machines 1, 8 and 15, machines in

group 2 are machines 2, 9 and 16 etc. Formally, machine j belongs to group i if and

only if j mod 7 = i.

• Execution rates are shown in Table 7.12. G1 to G7 are group 1 to group 7.

Class G1 G2 G3 G4 G5 G6 G7

1 2.20 7.00 10.25 1.00 5.70 0.50 12.00
2 1.95 7.05 9.78 0.95 5.65 0.56 11.85
3 2.00 7.25 10.02 0.98 5.75 0.67 11.80
4 2.05 6.75 9.99 1.02 5.82 0.49 12.05

Table 7.12: Execution Rates of Setting LoHi

• The arrival rates of the job classes were

α =
[

22.5 22.5 18.0 18.0
]
.

76 7. Analysis

7.3.1 Experiment 5

This experiment was conducted on Setting LoHi with the following parameters:

• All machines were dedicated in this experiment (aj = 1,∀j).

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.13. The metric used here is the mean response time.

The confidence level was 95%.

Class LPAS DG Gcµ FCFS

1 (0.22, 0.22) (0.21, 0.21) (0.21, 0.21)
2 (0.12, 0.12) (0.21, 0.22) (0.21, 0.22)
3 (0.30, 0.30) (0.21, 0.21) (0.21, 0.21)
4 (0.29, 0.29) (0.21, 0.21) (0.22, 0.22)

Overall (0.22, 0.22) (0.21, 0.21) (0.21, 0.21)

Table 7.13: Results of simulation 5

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.14. At the time when the LPAS DG, Gcµ and the FCFS tests were

stopped the actual arrival rates of job classes were within 4%, 3% and 4% respectively

of the assumed arrival rates. The LPAS DG test took 100 minutes (50 time units),

while the Gcµ and FCFS tests took 100 minutes (50 time units) and 320 minutes

(160 time units) respectively.

Discussion

The results of the simulation and our testing environment were similar.

7.3.2 Experiment 6

This experiment was conducted on Setting LoHi with the following parameters:

7. Analysis 77

Class LPAS DG Gcµ FCFS

1 0.31 0.26 0.26
2 0.22 0.25 0.26
3 0.37 0.24 0.25
4 0.35 0.25 0.26

Overall 0.31 0.25 0.26

Table 7.14: Overall results of Experiment 5

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.22 0.21 0.21

0.12 0.21 0.21

0.30 0.21 0.21

0.29 0.21 0.21

0.22 0.21 0.21

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.31 0.26 0.26

0.22 0.25 0.26

0.37 0.24 0.25

0.35 0.25 0.26

0.31 0.25 0.26

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.8: Experiment 5 results.

• The availabilities of machines were as follows:

aj =

0.50 if j = 2, 11 or 19

0.75 if j = 3, 12 or 20

1.00 otherwise

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.15. The metric used here is the mean response time.

The confidence level was 95%.

78 7. Analysis

Class LPAS DG Gcµ FCFS

1 (0.24, 0.24) (0.23, 0.23) (0.24, 0.24)
2 (0.13, 0.13) (0.24, 0.24) (0.24, 0.24)
3 (0.37, 0.37) (0.23, 0.23) (0.23, 0.23)
4 (0.35, 0.35) (0.24, 0.24) (0.24, 0.24)

Overall (0.26 - 0.27) (0.24, 0.24) (0.24, 0.24)

Table 7.15: Results of simulation 6

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.16. At the time when the LPAS DG, Gcµ and the FCFS tests were

stopped the actual arrival rates of job classes were within 6%, 8% and 5% respectively

of the desired arrival rates. The LPAS DG test took 110 minutes (55 time units),

while both the Gcµ and FCFS tests took 100 minutes (50 time units).

Class LPAS DG Gcµ FCFS

1 0.36 0.30 0.31
2 0.26 0.32 0.32
3 0.44 0.31 0.31
4 0.47 0.33 0.32

Overall 0.37 0.31 0.31

Table 7.16: Overall results of experiment 6

Discussion

The results of the simulation and our testing environment were similar.

7.4 Setting HiLo

This setting was constructed from 21 machines and 4 job classes. This setting was

from category HiLo. There were seven groups of machines. Members of the same

group have the same execution rates. Machines in group 1 are machines 1, 8 and 15,

machines in group 2 are machines 2, 9 and 16, etc. Formally, machine j belongs to

group i if and only if j mod 7 = i.

7. Analysis 79

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.24 0.23 0.24

0.13 0.24 0.24

0.37 0.23 0.23

0.35 0.24 0.24

0.26 0.24 0.24

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.36 0.30 0.31

0.26 0.32 0.32

0.44 0.31 0.31

0.47 0.33 0.32

0.37 0.31 0.31

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.156

0.311

0.467

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.9: Experiment 6 results.

• Execution rates are shown in Table 7.17. G1 to G7 are group 1 to group 7.

Class G1 G2 G3 G4 G5 G6 G7

1 2.00 2.50 2.25 2.00 2.20 1.75 2.25
2 4.50 4.0 4.20 4.00 3.80 3.90 3.95
3 6.00 6.20 6.25 6.00 5.75 5.90 6.05
4 10.00 10.25 10.50 9.50 10.25 10.25 10.00

Table 7.17: Execution Rates of Setting HiLo

• The arrival rates of the job classes were

α =
[

10.50 21.00 26.25 26.25
]
.

7.4.1 Experiment 7

This experiment was conducted on Setting HiLo with the following parameters:

• All machines were dedicated in this experiment (aj = 1, ∀j).

• This experiment included no machine failures.

80 7. Analysis

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.18. The metric used here is the mean response time.

The confidence level was 95%.

Class LPAS DG Gcµ FCFS

1 (0.49, 0.49) (0.50, 0.50) (0.49, 0.49)
2 (0.28, 0.28) (0.26, 0.26) (0.27, 0.27)
3 (0.24, 0.24) (0.18, 0.18) (0.18, 0.18)
4 (0.14, 0.14) (0.11, 0.11) (0.12, 0.12)

Overall (0.25, 0.25) (0.22, 0.22) (0.22, 0.22)

Table 7.18: Results of simulation 7

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.19. At the time when the LPAS DG, Gcµ and the FCFS tests were

stopped the actual arrival rates of job classes were within 4%, 7% and 6%, respectively

of the assumed arrival rates. All the tests took 100 minutes (50 time units).

Class LPAS DG Gcµ FCFS

1 0.50 0.53 0.51
2 0.31 0.30 0.31
3 0.32 0.21 0.23
4 0.35 0.14 0.17

Overall 0.35 0.25 0.26

Table 7.19: Overall results of experiment 7

Discussion

The results of the simulation and our testing environment were similar.

7.4.2 Experiment 8

This experiment was conducted on Setting HiLo with the following parameters:

7. Analysis 81

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.49 0.50 0.49

0.28 0.26 0.27

0.24 0.18 0.18

0.14 0.11 0.12

0.25 0.22 0.22

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.50 0.53 0.51

0.31 0.30 0.31

0.32 0.21 0.23

0.35 0.14 0.17

0.35 0.25 0.26

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.167

0.333

0.500

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.176

0.352

0.528

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.10: Experiment 7 results.

• The availabilities of machines were as follows:

aj =

0.50 if j = 2, 11 or 19

0.75 if j = 3, 12 or 20

1.00 otherwise

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.20. The metric used here is the mean response time.

The confidence level was 95%.

Class LPAS DG Gcµ FCFS

1 (0.79, 0.80) (0.64, 0.65) (0.62, 0.62)
2 (0.42, 0.42) (0.35, 0.35) (0.37, 0.37)
3 (0.27, 0.27) (0.24, 0.24) (0.28, 0.28)
4 (0.19, 0.19) (0.14, 0.15) (0.20, 0.21)

Overall (0.35, 0.35) (0.29, 0.29) (0.32, 0.32)

Table 7.20: Results of simulation 8

82 7. Analysis

Our testing environment was used to conduct this experiment, and the results

are shown in Table 7.21. At the time when the LPAS DG, Gcµ and the FCFS tests

were stopped the actual arrival rates of job classes were within 5%, 10% and 10%

respectively of the assumed arrival rates. The LPAS DG test took 124 minutes (62

time units), while the Gcµ and FCFS tests took 104 minutes (52 time units) and 100

minutes (50 time units) respectively.

Class LPAS DG Gcµ FCFS

1 1.22 0.96 0.65
2 0.77 0.54 0.41
3 0.53 0.38 0.33
4 0.73 0.24 0.25

Overall 0.74 0.44 0.36

Table 7.21: Overall results of experiment 8

Discussion

Compared to the simulation, the LPAS DG and GCµ policies performed poorly in

the test. The reason is that the ideal overall load on the machines was fairly high

(86.4%), but the different sources of errors and overhead caused the load to be close

to 100%. The sources of errors are higher overall arrival rates, over estimation for

processing rates and communication overhead coupled with the scheduling delay.

7.5 Setting LoLo

This setting was constructed from 21 machines and 4 job classes. This setting was

from category LoLo. There were seven groups of machines. Members of the same

group have the same execution rates. Machines in group 1 are machines 1, 8 and 15,

machines in group 2 are machines 2, 9 and 16, etc. Formally, machine j belongs to

group i if and only if j mod 7 = i.

• Execution rates are shown in Table 7.22. G1 to G7 are group 1 to group 7.

7. Analysis 83

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.80 0.65 0.62

0.42 0.35 0.37

0.27 0.24 0.28

0.19 0.15 0.20

0.35 0.29 0.32

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

1.22 0.96 0.65

0.77 0.54 0.41

0.53 0.38 0.33

0.73 0.24 0.25

0.74 0.44 0.36

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.267

0.533

0.800

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.407

0.814

1.221

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Ideal Load without failures is 86.4%

Figure 7.11: Experiment 8 results.

Class G1 G2 G3 G4 G5 G6 G7

1 2.00 2.50 2.25 2 2.20 1.75 2.25
2 4.50 4.00 4.20 4 3.80 3.90 3.95
3 6.00 6.20 6.25 6 5.75 5.90 6.05
4 10.00 10.25 10.50 9.50 10.25 10.25 10.00

Table 7.22: Execution Rates of Setting LoLo

• The arrival rates of the job classes were

α =
[

18.00 20.25 15.75 22.50
]
.

7.5.1 Experiment 9

This experiment was conducted on Setting LoLo with the following parameters:

• All machines were dedicated in this experiment (aj = 1.0,∀j).

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.23. The metric used here is the mean response time.

84 7. Analysis

The confidence level was 95%.

Class LPAS DG Gcµ FCFS

1 (0.25, 0.25) (0.20, 0.20) (0.20, 0.20)
2 (0.23, 0.23) (0.20, 0.20) (0.20, 0.20)
3 (0.23, 0.23) (0.21, 0.21) (0.21, 0.21)
4 (0.21, 0.22) (0.20, 0.20) (0.20, 0.20)

Overall (0.23, 0.23) (0.21, 0.21) (0.21, 0.21)

Table 7.23: Results of simulation 9

Our testing environment was used to conduct this experiment, and the results are

shown in Table 7.24. At the time when the tests were stopped the actual arrival rates

of job classes were within 5% of the assumed arrival rates. The LPAS DG test took

108 minutes (54 time units), while the Gcµ and FCFS tests took 110 minutes (55

time units) and 100 minutes (50 time units) respectively.

Class LPAS DG Gcµ FCFS

1 0.27 0.23 0.23
2 0.28 0.23 0.23
3 0.28 0.24 0.23
4 0.25 0.23 0.23

Overall 0.27 0.23 0.23

Table 7.24: Overall results of experiment 9

Discussion

The results of the simulation and our testing environment were similar. The Gcµ

policy performed as well as the FCFS policy and slightly better than the LPAS DG

policy.

7.5.2 Experiment 10

This experiment was conducted on Setting LoLo with the following parameters:

7. Analysis 85

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.31 0.26 0.26

0.32 0.26 0.26

0.32 0.27 0.27

0.34 0.26 0.26

0.32 0.26 0.26

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.52 0.37 0.41

0.63 0.38 0.42

0.57 0.38 0.43

0.52 0.38 0.42

0.56 0.38 0.42

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.210

0.421

0.631

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.12: Experiment 9 results.

• The availabilities of the machines were as follows:

aj =

0.50 if j = 2, 11 or 19

0.75 if j = 3, 12 or 20

1.00 otherwise

• This experiment included no machine failures.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.25. The metric used here is the mean response time.

The confidence level was 95%.

Class LPAS DG Gcµ FCFS

1 (0.28, 0.28) (0.24, 0.24) (0.24, 0.24)
2 (0.30, 0.30) (0.24, 0.24) (0.24, 0.24)
3 (0.27, 0.27) (0.25, 0.25) (0.25, 0.25)
4 (0.32, 0.32) (0.24, 0.24) (0.24, 0.24)

Overall (0.30, 0.30) (0.24, 0.24) (0.24, 0.24)

Table 7.25: Results of simulation 10

86 7. Analysis

Our testing environment was used to conduct this experiment, and the results

are shown in Table 7.26. At the time when the LPAS DG, Gcµ and the FCFS tests

were stopped the actual arrival rates of job classes were within 6%, 10% and 11%

respectively of the assumed arrival rates. The LPAS DG test took 156 minutes (78

time units), while the Gcµ and FCFS tests took 120 minutes (60 time units) and 100

minutes (50 time units) respectively.

Class LPAS DG Gcµ FCFS

1 0.39 0.32 0.29
2 0.39 0.32 0.29
3 0.35 0.33 0.30
4 0.36 0.33 0.29

Overall 0.37 0.33 0.29

Table 7.26: Overall results of experiment 10

Discussion

The results of the simulation and our testing environment were similar. The Gcµ

policy performed as well as the FCFS policy and slightly better than the LPAS DG

policy. The performance of these policies are close to each other. In this setting, the

decision of what policy to deploy should be based on other factors.

7.5.3 Experiment 11

This experiment was conducted on Setting LoLo with the following parameters:

• All machines were dedicated in this experiment (aj = 1.0,∀j).

• This experiment included machine failures. The mean uptime was 50 time units

and the mean failure period was 2 time units. The periods were exponentially

distributed.

7. Analysis 87

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.31 0.26 0.26

0.32 0.26 0.26

0.32 0.27 0.27

0.34 0.26 0.26

0.32 0.26 0.26

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.52 0.37 0.41

0.63 0.38 0.42

0.57 0.38 0.43

0.52 0.38 0.42

0.56 0.38 0.42

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.210

0.421

0.631

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.13: Experiment 10 results.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.27. The metric used here is the mean response time.

The confidence level was 95%. Our testing environment was used to conduct this

Class LPAS DG Gcµ FCFS

1 (0.25, 0.25) (0.21, 0.21) (0.21, 0.21)
2 (0.24, 0.24) (0.21, 0.21) (0.21, 0.21)
3 (0.24, 0.24) (0.21, 0.21) (0.22, 0.22)
4 (0.24, 0.24) (0.21, 0.21) (0.21, 0.21)

Overall (0.24, 0.24) (0.21, 0.21) (0.21, 0.21)

Table 7.27: Results of simulation 11

experiment, and the results are shown in Table 7.28. At the time when the LPAS DG,

Gcµ and the FCFS tests were stopped the actual arrival rates of job classes were within

3%, 2% and 5% respectively of the assumed arrival rates. The LPAS DG test took 50

minutes (100 time unit), while the Gcµ and FCFS tests took 243 minutes (486 time

units) and 55 minutes (110 time units) respectively.

88 7. Analysis

Class LPAS DG Gcµ FCFS

1 0.35 0.26 0.24
2 0.34 0.26 0.24
3 0.33 0.27 0.24
4 0.29 0.26 0.24

Overall 0.33 0.26 0.24

Table 7.28: Overall results of experiment 11

Discussion

The results of the simulation and our testing environment were similar. The Gcµ

policy performed as well as the FCFS policy and slightly better than the LPAS DG

policy.

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.31 0.26 0.26

0.32 0.26 0.26

0.32 0.27 0.27

0.34 0.26 0.26

0.32 0.26 0.26

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.52 0.37 0.41

0.63 0.38 0.42

0.57 0.38 0.43

0.52 0.38 0.42

0.56 0.38 0.42

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.210

0.421

0.631

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.14: Experiment 11 results.

7.5.4 Experiment 12

This experiment was conducted on Setting LoLo with the following parameters:

7. Analysis 89

• The availabilities of the machines were as follows:

aj =

0.50 if j = 2, 11 or 19

0.75 if j = 3, 12 or 20

1.00 otherwise

• This experiment included machine failures. The mean uptime was 50 time units

and the mean failure period was 2 time units. The periods were exponentially

distributed.

Results

The simulations were done using the simulation software used in [3] and the results

obtained are shown in Table 7.29. The metric used here is the mean response time.

The confidence level was 95%. Our testing environment was used to conduct this

Class LPAS DG Gcµ FCFS

1 (0.31, 0.31) (0.26, 0.26) (0.26, 0.26)
2 (0.32, 0.32) (0.25, 0.26) (0.26, 0.26)
3 (0.32, 0.32) (0.27, 0.27) (0.27, 0.27)
4 (0.34, 0.34) (0.26, 0.26) (0.26, 0.26)

Overall (0.32, 0.32) (0.26, 0.26) (0.26, 0.26)

Table 7.29: Results of simulation 12

experiment, and the results are shown in Table 7.30. At the time when the LPAS DG,

Gcµ and the FCFS tests were stopped the actual arrival rates of job classes were within

3%, 3% and 4% respectively of the assumed arrival rates. The LPAS DG test took

176 minutes (88 time units), while the Gcµ and FCFS tests took 108 minutes (54

time units) and 100 minutes (50 time units) respectively.

Discussion

The response times in the results of our experiment were significantly higher than the

simulation results. The reason behind this is the high load coupled with failures and

90 7. Analysis

Class LPAS DG Gcµ FCFS

1 0.52 0.37 0.41
2 0.63 0.38 0.42
3 0.57 0.38 0.43
4 0.52 0.38 0.42

Overall 0.56 0.38 0.42

Table 7.30: Overall results of experiment 12

over estimation of the execution rates (the assumed execution rates were higher than

the actual ones in this experiment).

LPAS_DG Gc! FCFS

Class 1

Class 2

Class 3

Class 4

All

0.31 0.26 0.26

0.32 0.26 0.26

0.32 0.27 0.27

0.34 0.26 0.26

0.32 0.26 0.26

Class 1

Class 2

Class 3

Class 4

All

LPAS_DG Gc! FCFS

0.52 0.37 0.41

0.63 0.38 0.42

0.57 0.38 0.43

0.52 0.38 0.42

0.56 0.38 0.42

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

SimulationChart

0

0.3375

0.6750

1.0125

1.3500

Class 1 Class 2 Class 3 Class 4 All

MUSST

0

0.133

0.267

0.400

Class 1 Class 2 Class 3 Class 4 All

Simulation

0

0.210

0.421

0.631

Class 1 Class 2 Class 3 Class 4 All

MGST

LPAS_DG Gcu FCFS

Figure 7.15: Experiment 12 results.

Chapter 8

Conclusion

8.1 Discussion

8.1.1 Testing Environment

We believe that the testing environment developed will prove to be very beneficial for

theorists. Not only can the testing environment be used to test scheduling schemes,

but the software itself was designed to be extensible in order to include additional

features. Having such a testing environment allows researchers to do the following:

• Verify that the scheduling policies designed can be implemented.

• Validate the scheduling policies.

• Verify that the assumptions made actually hold and are reasonable.

• Determine the weak points in a scheduling policy and potentially improve them.

8.1.2 LPAS DG implementation

Modifications

The LPAS DG scheduling policy explained in Section 4.4.6 was implemented for the

first time in our testing environment. Here we give a few remarks regarding the

91

92 8. Conclusion

implementation of this policy.

The LPAS DG policy is silent on how to choose a server if there is more than

one available to serve a job. For simplicity, in our first implementation we chose the

FCFS policy to choose servers, but this resulted in performance degradation. The

performance is affected because the scheduling process might be blocked when the

head of the available servers queue is a server capable of executing a limited number

of job classes and none of the currently queued jobs belong to any of these classes.

The FCFS implementation was modified to remove the head of the server queue and

insert it at the back of the queue, if there are jobs in the jobs queue but this server

is not able to execute any of them. However, we believe that the performance of the

LPAS DG can be further improved by employing a suitable policy to choose servers

from the available servers queue, especially in the case of a low or medium load on

the system. We believe that further research must be conducted to come up with

a suitable policy. However, we recommend the LPAS scheduling policy for clusters

[4] to be considered as a possible solution, since this policy is suitable for choosing

servers for jobs in heterogeneous environments. This modification is not necessary

but could improve the performance under low or meduim loads.

The LPAS DG policy decisions depend on a matrix called δ∗ which is produced by

solving a linear programming problem (Section 4.4.6). The δ∗ matrix depends on the

values of aj. As a result, in [3] it is suggested that a new δ∗ matrix must be produced

at every availability/unavailability event.

Whenever a machine becomes available or unavailable, the scheduler

solves the allocation LP to find δ∗.

Since the matrix δ∗ depends on aj, and the machines’ aj varies between the avail-

ability and unavailability events, we think that δ∗ should be updated every time any

aj changes. This solution is expensive to implement because it is very hard to notify

the mapper of every change to any aj. In addition, this will require solving the allo-

cation LP frequently, which is also expensive and will raise a scalability problem. To

solve this issue, we assumed a time resolution Tsystem (e.g. 10 minutes). The values

8. Conclusion 93

of aj are sent to the Mapper periodically which causes it to solve the allocation LP

once again after receiving the values of aj. The determination of an optimal time

resolution length is open to research. We believe that this modification is necessary

to make LPAS DG scalable.

Robust Modifications

In some experiments the performance of the scheduling schemes differed from the

simulation results due to the machines experiencing an overload. This happens when

machines are highly loaded (at least 80%). The different sources of errors that can

occur in a real system can significantly raise the load, even potentially causing insta-

bility in the system. These errors can be caused by:

1. The actual arrival rate being larger than the assumed one. This results

in receiving more jobs than expected and increasing the load on the machines.

2. Overestimation of processing rates. This results in executing the jobs in

more time than expected causing the server to be busier thus the load increases

on the servers.

3. Overhead caused by communication and scheduling delays. Assume

that a server announces its availability at time t1, then the mapper learns of the

availability of this server at time t2 and consequently performs the scheduling

and chooses a job at time t3 and then sends the job. The server then receives

the job and starts the execution at time t4. At time t5 the server finishes the

job execution but only at time t6 does the mapper learn that the job is done,

obtaining the results at t7. In the model, the processing time is considered to

be t6 − t5, but in the actual implementation, there is an overhead of (t5 − t1) +

(t7 − t6). This overhead is usually negligible, but sometimes it affects the load

on the system, especially if t6 − t5 is small compared to the overhead.

4. Machine failures. Although machines failure can be incorporated in the work-

load models, they can still increase the effective load due to the fact that it takes

94 8. Conclusion

time for the mapper to realize that a server is down. This time is wasted and

effectively increases the load. For example, when using LPAS DG, suppose that

server 3 is the only server executing jobs from class 1, and the execution time is

5 minutes. If server 3 fails when executing a particular job and the “time-out”

parameter was set to 3 times (i.e. 3 times the estimated execution time should

elapse before considering the job “timed out”), then the Mapper will not con-

sider server 3 down until 15 minutes have elapsed from the moment that the

job was sent. These 15 minutes were essentially lost, with arriving jobs from

class 1 accumulating in the queue at the Mapper within that time.

If any or all of the above factors cause a significant increase in the load, the

performance of the scheduling scheme will deteriorate.

The LPAS DG policy suffered the most in our experiments from the above factors

due to the aggressive nature of this policy in minimizing the number of machines to

execute each job class. Another factor is the exclusivity that can happen when using

this policy. When one class can be executed by a small number of machines, then

the performance depends only on these machines, so the effect of the factors mention

above is magnified. Contrast this with FCFS, where if a machine under performs,

the effect is less obvious since this under performing machine can get help from other

(potentially over performing) machines. Finally, the scheduling delay can contribute

to the time needed to process jobs, effectively raising the load on machines for all

policies. The scheduling delay for LPAS DG is slightly larger than Gcµ due to the

overhead of solving the LP, while both policies have a larger delay than the FCFS

policy due to the delay that occurs when choosing a job, as the LPAS DG or Gcµ

policies must check multiple queues to choose the suitable job where the FCFS policy

has only one queue. The mentioned issues (exclusivity and scheduling delay) cause

the LPAS DG policy to be the most sensitive to the above four factors, the Gcµ policy

to be the next most sensitive and then the FCFS policy (least scheduling delay) is

the least sensitive.

After discussing the reasons that can effect the robustness of the LPAS DG, we

provide the following suggestions to improve robustness:

8. Conclusion 95

1. Arrival rates estimation improvement. Since the LPAS DG scheme de-

pends on solving the LP problem and that in turn depends on values that include

arrival rates of job classes, estimates should be as close as possible. To do so,

we propose that the actual arrival rates should be monitored (a feature that our

tool provides), and check the values against the estimated values every specific

time (Tarrival rate) and resolve the LP if one of the actual values differs from the

estimated one by a specific threshold percentage (Tharrival rate) that depends

on the load and the job class. Tarrival rate could be a specific time period or a

number of job arrivals from a class (e.g. 10 jobs). We believe that this solution

is not computationally costly, since the checking operation requires O(N) time

and O(1) space. We expect the number of jobs classes to be relatively small, so

there should be no scaling issues.

2. Avoiding processing rates underestimation. We propose that every pro-

cessing rate entry (for a specific server for a specific job class) is modified then

checked (against the estimated peer) whenever a job is done, then the LP is

resolved if that entry differs from the estimated one by a specific threshold

percentage (Tprocessing rate) that depends on the load and the job class. This

solution requiresO(NM) space and O(1) time.

3. Lessen the affect of communication and scheduling delays. Let pi,j be

an estimation of the value
1/µi,j

1/µi,j + τj
(8.1)

where τ is the communication and scheduling delay for machine j.

In the example mentioned in factor 3 on p.93 p would be

t6 − t5
t7 − t1

(8.2)

We propose that all execution rates must be multiplied by p before resolving

the LP to take this effect into consideration.

96 8. Conclusion

4. Lessen the machine failure affect. We propose choosing a low value for

the time out, which will result in allowing the mapper to faster indicate server

failures. The downside of this approach is that the mapper might consider a

server failed one when it is not.

To sum up, we believe that some modifications to the LPAS DG policy should

be performed to make it more implementable, some of which have already been done

in our implementation. We believe that these changes will make the LPAS DG an

excellent (possibly the best) solution in heterogeneous environments and a good one

in other environments.

8.2 Future Work

The following areas and software additions are of interest for future work:

• The implementation of more scheduling polices and the conducting of exper-

iments, in addition to the implementation of more probability distributions.

Implementing scheduling schemes and testing them is the reason why this soft-

ware was built.

• Changing the software layer used. This can be useful to allow testers to use

Windows or Linux computers as servers. This can be done by extending the

Executer abstract class and implementing its methods properly. This might al-

low the testing environment to expand and allow testers to ask users at home to

install the Puller module on their machines and therefore allowing experiments

with a larger number of machines.

• Adding the feature for reading real workload traces and simulating them.

• Launching an open source project to maintain the software and expand it. We

believe that release of the source code and putting the software in the open

source domain will result in the expansion of this tool. Other research can

help develop this testing environment and use it. However, we recommend that

8. Conclusion 97

the open source project should be supervised by a committee to guarantee the

correctness of the software updates.

• Finding a suitable policy to choose a server among a set of servers when

LPAS DG is used. We believe that this will improve the LPAS DG perfor-

mance especially in the case where the system is not highly loaded.

• Finding optimal values of parameters mentioned in Section 8.1.2 . The Tsystem

value for example, should lessen the communication in the grid system while

aiding the LPAS DG policy in producing an updated δ∗ that will ultimately

maximize the performance.

Bibliography

[1] ABC@home “http://abcathome.com/”, last visited March 10, 2008.

[2] Artificial Intelligence System “http://www.intelligencerealm.com/aisystem/system.php”,

last visited March 10, 2008.

[3] I. Al-Azzoni and D. Down, “Dynamic scheduling for heterogeneous desktop

grids,” in Grid 2008, 2008.

[4] I. Al-Azzoni and D. Down, “Linear programming based affinity scheduling of

independent tasks on heterogeneous computing systems,” in IEEE Transactions

on Parallel and Distributed Systems, to appear, 2008.

[5] S. Andradóttir, H. Ayhan, and D. G. Down, “Compensating for failures with

flexible servers,” Operations Research, vol. 55, no. 4, pp. 753–768, 2007.

[6] S. Andradóttir, H. Ayhan, and D. G. Down, “Dynamic server allocation for

queueing networks with flexible servers,” Operations Research, vol. 51, no. 6,

pp. 952–968, 2003.

[7] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski, “Fault-aware

scheduling for bag-of-tasks applications on desktop grids,” in 7th IEEE/ACM

International Conference on Grid Computing, pp. 56–63, 2006.

[8] Apple, “Mac OS X Server, Xgrid administration,” tech. rep., Apple Inc, 2005.

[9] APS@home “http://www.apsathome.org/”, last visited March 10, 2008.

98

BIBLIOGRAPHY 99

[10] R. K. Armstrong, “Investigation of Effect of Different Run-Time Distributions on

Smartnet Performance,” Master’s thesis, Naval Postgraduate School, September

1997.

[11] A. L. Beberg and V. S. Pande, “Storage@home: Petascale distributed storage,”

in Proceedings of the Conference of 21th International Parallel and Distributed

Processing Symposium, pp. 1–6, 2007.

[12] BURP Web site “http://burp.boinc.dk/”, last visited March 10, 2008.

[13] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Y. Park, and C.-S. Hwang,

“Characterizing and classifying desktop grid,” in Seventh IEEE International

Symposium on Cluster Computing and the Grid, pp. 743–748, 2007.

[14] S. Choi, H. Kim, E. Byun, and C. Hwang, “A taxonomy of desktop grid sys-

tems focusing on scheduling,” Tech. Rep. KU-CSE-2006-1120-01, Department of

Computer Science and Engineering, Korea University, November 2006.

[15] Compute Against Cancer “http://www.computeagainstcancer.org/”, last visited

March 10, 2008.

[16] Condor Home Page “http://www.cs.wisc.edu/condor/ ”, last visited March 20,

2008.

[17] Distributed.net “http://www.distributed.net/”, last visited March 8, 2008.

[18] Distributed.net “http://www.distributed.net/ogr”, last visited March 8, 2008.

[19] P. Domingues and A. A. L. Silva, “Scheduling for fast turnaround time on insti-

tutional desktop grid,” tech. rep., CoreGRID, January 2006.

[20] FightAIDS@home “http://fightaidsathome.scripps.edu/”, last visited March 10,

2008.

[21] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann, 2004.

100 BIBLIOGRAPHY

[22] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physiology of the

grid: An open grid services architecture for distributed systems integration,”

tech. rep., Argonne National Laboratory, University of Chicago, University of

Southern California IBM Corporation, 2002.

[23] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hens-

gen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,

and H. J. Siegel, “Scheduling resources in multi-user, heterogeneous, computing

environments with smartnet,” in HCW ’98: Proceedings of the Seventh Hetero-

geneous Computing Workshop, p. 3, IEEE Computer Society, 1998.

[24] World Community Grid and the Oswaldo Cruz Institute - Fiocruz - Genome

Comparison Project “http://www.dbbm.fiocruz.br/GenomeComparison”, last

visited March 9, 2008.

[25] J. Gosling and H. McGilton, “The Java language environment,” tech. rep., Sun

Microsystems, May 1996.

[26] Y.-T. He, I. Al-Azzoni, and D. Down, “MARO - MinDrift affinity routing for

resource management in heterogeneous computing systems,” in Proceedings of

the Conference of the Centre for Advanced Studies on Collaborative Research,

pp. 71–85, 2007.

[27] World Internet Usage Statistics News and Population Stats. “http://www. in-

ternetworldstats.com/”, last visited February 29, 2008.

[28] Internet Systems Consortium. “http://www.ISC.org/”, last visited February 25,

2008.

[29] Javadoc Tool Home Page “http://java.sun.com/j2se/javadoc/”, last visited

February 25, 2008.

[30] D. G. John L. Hennessy, David A. Patterson and K. Asanovic, Computer Archi-

tecture: A Quantitative Approach. Morgan Kaufmann, 2003.

BIBLIOGRAPHY 101

[31] R. B. Klaus Krauter and M. Maheswaran, “A taxonomy and survey of grid

resource managment systems,” Software: Practice and Experience, vol. 32, no. 2,

pp. 135–164, 2002.

[32] D. Kondo, A. A. Chien, and H. Casanova, “Resource management for rapid appli-

cation turnaround on enterprise desktop grids,” in Proceedings of the ACM/IEEE

Conference on Supercomputing, p. 17, 2004.

[33] E. Kourpes, “Grid computing: Past, present and future, an innovation perspec-

tive,” tech. rep., IBM Corporation, June 2006.

[34] A. Mandelbaum and A. L. Stolyar, “Scheduling flexible servers with convex delay

costs: Heavy-traffic optimality of the generalized cµ-rule,” Operations Research.,

vol. 52, no. 6, pp. 836–855, 2004.

[35] G. E. Moore, “Cramming more components onto integrated circuits,” Electron-

ics, vol. 38, no. 8, pp. 114–117, 1965.

[36] Muthucumaru, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic

matching and scheduling of a class of independent tasks onto heterogeneous com-

puting systems,” in Proceedings of the 8th Heterogeneous Computing Workshop,

pp. 30–44, 1999.

[37] PiHex - a distributed effort to calculate Pi

“http://oldweb.cecm.sfu.ca/projects/pihex/”, last visited March 9, 2008.

[38] Proteins@home “http://biology.polytechnique.fr/proteinsathome”, last visited

March 10, 2008.

[39] X. Ren, R. Eigenmann, and S. Bagchi, “Failure-aware checkpointing in fine-

grained cycle sharing systems,” in HPDC ’07: Proceedings of the 16th interna-

tional symposium on High performance distributed computing, pp. 33–42, ACM,

2007.

102 BIBLIOGRAPHY

[40] Rosetta@home “http://boinc.bakerlab.org/rosetta/”, last visited March 10,

2008.

[41] Seti@home “http://setiathome.berkeley.edu/”, last visited March 8, 2008.

[42] SHA-1 Collision Search “http://boinc.iaik.tugraz.at/”, last visited March 10,

2008.

[43] R. Shah, B. Veeravalli, and M. Misra, “On the design of adaptive and decen-

tralized load balancing algorithms with load estimation for computational grid

environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,

no. 12, pp. 1675–1686, 2007.

[44] Platform Computing “http://www.platform.com ”, last visited March 20, 2008.

[45] Sodoku Project Web site “http://dist2.ist.tugraz.at/sudoku/”, last visited March

10, 2008.

[46] Spinhenge@home “http://spin.fh-bielefeld.de/”, last visited March 10, 2008.

[47] Java AWT: Delegation Event Model “ http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html”,

last visited June 1, 2008.

[48] uFluids Web Site “http://www.ufluids.net/”, last visited March 10, 2008.

[49] Xgrid@Stanford “http://cmgm.stanford.edu/ cparnot/xgrid-stanford/”, last vis-

ited February 25, 2008.

[50] N. R. Yongnan Ji, Jin Hao and A. Lendasse, “Direct and recursive prediction of

time series using mutual information selection,” in Computational Intelligence

and Bioinspired Systems, pp. 1010–1017, Springer Berlin / Heidelberg, 2005.

Appendix A

Source Code and Javadoc

Documentation CD

The accompanying Compact Disc contains the source code of the testing environment

software and its Javadoc Documentation.

103

Appendix B

User Manual

This appendix serves as a user manual for the developed testing environment. In

order to conduct an experiment, the tester should prepare the machines which will

serve as servers. After that the tester has to define the parameters of the system,

then start the test. The tester can then monitor the test and finally read and store

statistics about the test. The remainder of this chapter discusses these phases.

B.1 Preparation of Servers

In this phase the execution layer should be prepared. Two steps should be taken at

every server in order to use the Xgrid execution layer.

• The Xgrid controller and agent services should be turned on. See Appendix C

for details.

• The Puller.jar executable should be running, by executing the following com-

mand: java -jar Puller.jar. The Puller.jar file can be found on the Compact

Disc of Appendix A. This executable contains the Puller module of the software.

104

B. User Manual 105

Menu bar

Tool bar

Sub-tabs

Main tabs

Figure B.1: General Screen Shot

B.2 User Interface

The User interface of the software is divided into the tool bar (where the most used

actions have short cuts), the menu bar (where system functions can be invoked) and

the main tabs. Each main tab is responsible for one phase of the test or a particular

functionality and has several sub tabs. The remaining sections discuss these tabs in

detail.

106 B. User Manual

B.3 Definition Phase

This phase is done through the main tab labelled Definitions. In this phase the tester

should define the parameters of the system, including:

• General Parameters (e.g time units in minutes or scheduling policy to be used)

• Job classes

• Servers

• Server Availability

B.3.1 General Parameters

These general parameters are accessed under the main tab Definitions and the sub

tab General.

• Time Unit in Minutes: this parameter defines the length of the time unit 1used

in a test in minutes.

• Mean Time to Repair (MTTR): this parameter defines the mean length of the

failure periods for all the servers when the artificial failures option is enabled.

• Mean Time to Failure: this parameter defines the mean length of the up-time

periods for all the servers when the artificial failures option is enabled.

• Mapping Scheme: This parameter determines the scheduling policy used in a

test.

• Time Resolution: This parameter is Tsystem. Please refer to Section 8.1.2.

• Artificial Failures and T/O (Time-out): Artificial failures can be simulated to

study the effect of failures. This parameter determines whether the artificial

failures option is enabled or not.

1A time unit is a hypothetical time unit used as the unit of all time quantities in the system.
(e.g. the units of execution rates and arrival rate is task per time unit)

B. User Manual 107

• Time-out: Every job has an estimated execution time. If a server failure occurs

while executing a job, the completion notification will not reach the mapper.

The mapper waits for that job to be completed for n times the expected ex-

ecution time, where n is the ”Time-out after” parameter. Then the mapper

invokes the handleTimeOut method of the active scheduling scheme.

After the user has set all of the parameters, she should click on the Apply button

(Figure B.1).

B.3.2 Job Classes

The job classes are defined in this phase. Every job class has an ID, iterations and

arrival rate. The ID of a job class the number of the column which represents this

job class in the µ matrix (Section 3.1). The iterations of a job class is the mean

number which the jobs of this class have as iterations (Appendix D). In other words,

the number of iterations is the number of times the triple loop in Appendix D is

executed. The iterations number will affect the real execution rates of the machines.

The arrival rate is the mean number of jobs that will arrive to the system per time

unit under an exponential interarrival time distribution. To add a job, click on the

plus button and fill the iterations and the arrival rate. Then click on the Submit

button (Figure B.2). The classes will be added in order. To delete a job, select it and

then click the minus button.

B.3.3 Servers

The servers are defined in this phase. There are many ways that this can be done.

Obviously, the servers to be defined should be the ones set up in the Preparation Of

Servers phase (B.1). One way of adding servers is to click the plus button and insert

the information related to the server (Figure B.3). The full canonical hostname should

be inserted as the hostname. The password of the Xgrid layer should be entered as

the password. The Iterations and the Processing Time are important parameters.

Each server should be sent the loop job (Appendix D) to execute a few times, then

108 B. User Manual

Figure B.2: Job Classes Screen Sub Tab

the time required by this server to execute each loop is measured, and the average is

taken. For example if the machine itb237-01.cas.mcmaster.ca is to be added to the

set of servers, the software must know how long it takes this machine to execute the

loop job for a particular number of iterations. This allows the software to predict the

actual processing rates for machines. The iterations and time to process in minutes

are inserted when a server is desired to be added. The servers will be added in order.

The ID of a server is its order in the µ matrix (Section 3.1).

For convenience, a file can be prepared where each line corresponds to one server.

The file extension should be srs. Each line should be structured in the following

format (spaces are ignored):

B. User Manual 109

hostname ; password ; time to process (minutes) ; iterations

For example the following are the contents of the file imported before the screen

shot in Figure B.3 was taken.

itb237-01.cas.mcmaster.ca; 9ijn8uhb; 1 ; 500

itb237-04.cas.mcmaster.ca;password4; 0.51 ; 500

itb237-03.cas.mcmaster.ca;9ijn8uhb; 1 ; 500

itb237-05.cas.mcmaster.ca;9ijn8uhb; 1 ; 500

itb237-07.cas.mcmaster.ca;9ijn8uhb; 1.0305 ; 500

itb237-09.cas.mcmaster.ca;9ijn8uhb; 1.045 ; 500

To delete a server, it should be selected and then the minus button should be

clicked.

Processing Rates

To modify or view the processing rates of a server, the user should select the

server by clicking on it. The Processing Rates tab will appear on the right

side (Figure B.4). The real rates (second column) are those which the software

estimated using the iterations and the time to process values inserted by the

tester. The assumed rates (third column) can be changed. It is recommended

that the tester does not force the server to be more than 4 times faster than the

real rates (e.g. if the real rate is 4.0, it is recommended that the assumed rate

is not larger than 16.0). Basically, the Assumed Rate column for a server with

ID i is the ith column in the µ matrix. To change an assumed rate, the user has

to click on the appropriate cell and type a new number then press enter. For

convenience, the tester can import all of the processing rates of a setting using

the Import PR button. The file should be a text file with extension mue. The file

format should be similar to the µ matrix but entries are separated by commas.

The following is the content of the mue file used in the LoHi experiments (Chapter 7).

110 B. User Manual

Figure B.3: Servers Screen Sub Tab

2.2, 7, 10.25, 1, 5.7, 0.5, 12, 2.2, 7, 10.25, 1, 5.7, 0.5, 12, 2.2, 7, 10.25, 1, 5.7, 0.5, 12

1.95, 7.05, 9.78, 0.95, 5.65, 0.56, 11.85,1.95,7.05,9.78, 0.95,5.65,0.56,11.85,1.95,7.05,9.78, 0.95, 5.65,0.56,11.85

2, 7.25, 10.02, 0.98, 5.75, 0.67, 11.8, 2, 7.25, 10.02, 0.98, 5.75, 0.67, 11.8, 2, 7.25, 10.02, 0.98, 5.75, 0.67, 11.8

2.05, 6.75, 9.99, 1.02, 5.82, 0.49,12.05, 2.05,6.75,9.99,1.02,5.82,0.49,12.05, 2.05, 6.75,9.99,1.02, 5.82, 0.49,12.05

Failure Periods

In the case that the artificial failure option is enabled, the artificial failure of a server

can be viewed by clicking on a server, and then selecting the Failure Periods sub tab

(Figure B.5). To generate new failure traces for all of the servers, the button Fill

B. User Manual 111

Figure B.4: Servers with processing rates.

Traces should be clicked. The actual mean up-time and the mean failure period of a

server are viewed at the bottom. To change these values for each server individually,

the user has to change values in the text fields and click on Apply.

B.3.4 Availability

Every machine has a puller module running on it. To set up the module a message

has to be sent to it. In this phase the messages (and hence the settings) of the puller

modules (i.e servers) are prepared and sent.

One or more servers are selected from the table on the left (Figure B.6), then the

properties are set in the right side. The properties are:

112 B. User Manual

Figure B.5: Servers with failure periods.

• Availability is the aj value (Section 3.2).

• Period is the time in minutes that aj will be imposed on the selected servers.

The Period should be longer than the time the tests are to be run for.

• Availability Mode is what method of availability prediction is used (Section 3.2).

There are three different modes. Choosing different modes will be followed by

the inserting of parameters related to that mode.

After preparing the messages, they can be sent to the servers using the Servers

menu in the menu bar or the Start Servers button in the toolbar. In addition, the

servers can be paused, pinged or killed. All of these actions can be found under

B. User Manual 113

the Servers menu in the menu bar. After pausing a server it must be started again

to function properly. Pinging can be used to make sure the server is turned on.

After killing the server, the puller executable must be run on that server (using

java− jarpuller.jar) to restart it, as the kill signal makes the puller.jar process exit.

Figure B.6: Availability Screen Sub Tab

B.3.5 LP

In this phase the LP allocation can be solved. To solve the LP allocation, the solve

button should be clicked. The δ∗ matrix is then displayed. Also, λ∗ and ρ∗ are shown

as in Figure B.7 (Section 4.4.6).

114 B. User Manual

After the completion of the definitions, you can save them to a file using the

Save definitions button. Saved definitions can be restored using the Load definitions

button. All the information in the definition is saved except for the Scheduling scheme

chosen which should be determined before every test.

Figure B.7: LP Sub Tab

B.4 Monitoring

After the completion of the definition phase, the experiment can be started by clicking

on the Start button in the tool bar or Action in the menu bar. Under the Monitoring

tab, there are two items to monitor: the Jobs Table and the Available Servers. In the

B. User Manual 115

Jobs Table sub tab, jobs can be monitored. This table is updated whenever an event

occurs. Under the Available Servers sub tab, the available servers can be monitored.

To see the currently available servers, the Update button must be clicked to see the

changes.

Figure B.8: Jobs Table

B.5 Statistics

To obtain statistics about the tests, the main tab Statistics is used. This main tab

has three sub tabs:

116 B. User Manual

• General sub tab which shows general statistics such as: the start time of the

test, the time units elapsed and the response time.

• Job Classes sub tab which shows statistics about each job class. Such statistics

include the average response time, average waiting time, total number of jobs

arrived, desired arrival rate and actual arrival rate (Figure B.9).

• Processing Rates sub tab which shows the µ matrix and the actual processing

rates per machine per job class.

All these statistics can be saved into files. This can be done using the Tables

menu in the menu bar. A save dialogue appears on the screen. The user can browse

to the target folder and then type the name of the test (e.g. LPAS). As a result

four files will be saved (e.g. LPAS classesStats.txt, LPAS jobs.txt, LPAS mue.txt,

LPAS systemStats.txt). The four files can be open with spread sheet applications.

iWork 08 Numbers is recommended to process these files.

B. User Manual 117

Figure B.9: Job Classes Statistics

Appendix C

Instructions

This appendix is a collection of setting configuration procedures to help in using the

testing environment.

C.1 Creating an Xgrid controller/agent machine

To set a Mac OS X based machine as a server in a testing grid the following steps

must be taken:

• Setting a Password. To do so one should:

1. Open System Preferences under /Applications/System Preferences.app.

2. Click on Sharing under Internet & Network. See Figure C.1.

3. From the list of services click on Xgrid and click the Configure Button.

See Figure C.2.

4. Change the Authentication Method to Password and insert the password

desired, then click on the OK button. This step will result in creating a

file named /etc/xgrid/agent/controller-password containing the password.

5. Open the terminal and type sudo cp /etc/xgrid/agent/controller-password

/etc/xgrid/controller/agent-password.

118

C. Instructions 119

Figure C.1: The Sharing Tab in System Preferences

6. On the command-line, type sudo cp /etc/xgrid/agent/controller-password

/etc/xgrid/controller/client-password.

• Starting the agent and the controller.

1. Execute the following: sudo xgridctl c start. This results in starting the

controller process.

2. Open System Preferences under /Applications/System Preferences.app.

3. Click on Sharing under Internet & Network. See Figure C.1.

4. From the list of services click on Xgrid and click the Configure Button.

See Figure C.2.

5. Click on the Use a specific controller radio button and choose or type the

machine’s full host name.

6. Click the OK button.

7. Check the Xgrid check button from the Services list.

120 C. Instructions

Figure C.2: The list of services and the Configure button.

C.2 Setting the Xgrid agent to execute only one

task at a time

To configure the Xgrid agent to execute only one task at a time the following should

be done:

• Open the following file: /Library/Preferences/com.apple.xgrid.agent.plist

• Edit the MaximumTaskCount and set it to 1.

• Restart the agent process for this change to take effect.

Appendix D

LoopUsed As a process

stat ic public void main (St r ing [] args) {
/∗

This main methods t a k e s two arguments .

The f i r s t one i s t h e i t e r a t i o n s f o r t h e t r i p l e l oop

The second on i s a r a t i o used to c o n t r o l t h e l e n g t h o f t h e p r o c e s s

.

∗/
System . out . p r i n t l n (” S ta t r i ng ”) ;

int i t e r a t i o n s ;

double r a t i o = Double . parseDouble (args [1]) ;

for (int k = 0 ; k < 100∗Double . parseDouble (args [1]) ; k++){ // 100∗ r a t i o

i t e r a t i o n s

i t e r a t i o n s = In t ege r . pa r s e In t (args [0]) ;

int dum = 0 ; // dummy v a r i a b l e

for (int i = 0 ; i < i t e r a t i o n s ; i++){ // The t r i p l e l oop .

for (int j = 0 ; j < i t e r a t i o n s ; j++) {
for (int m = 0; m < i t e r a t i o n s ; m++); {

dum++; // mean ing l e s s op e r a t i on

dum−−; // ano ther mean ing l e s s op e r a t i on

}
}

}
/∗ The f o l l o w i n g ou tpu t i s used by t h e Xgrid l a y e r to de termine th e

p e r c en t a g e don from the j o b . ∗/
System . out . p r i n t l n (”<xgrid >{con t r o l = statusUpdate ; percentDone =” + (k+1)

∗ r a t i o + ” ; }</xgrid>”) ;

}
System . out . p r i n t l n (”Done”) ;

}

121

Appendix E

Statistics

E.1 Ratios Statistics

The source code of the jobs sent to servers can be found in Appendix D. Every job is

constructed from three nested loops that are executed 100x times, where x is called

the ratio. If x equals 1 then the three nested loop will be executed 100 times, and if

x equals 0.5 the three nested loops will be executed only 50 times. To impose hetero-

geneity this ratio is changed. For example, if machine itb237-01.cas.mcmaster.ca can

execute a loop process with 500 iterations at rate 2 tasks per time unit, and the tester

sets the assumed rate as 4 tasks per time unit then the ratio is 0.5. The following

figures show the relationship between the ratios and the execution time for a job with

500 iterations.

E.2 Availability Statistics

The relation between µ′i,j = ajµi,j [3] was found to hold more accurately on Intel Mac-

based machines than on Power PC Mac-based machines. However on both types of

hardware the relationship holds when aj > 0.5. As a result, i2n our experiments we

used values of aj that are larger than 0.5. The following figures show the relation

between aj and the execution rates. The Rate units are tasks per second.

122

E. Statistics 123

0

1.875

3.750

5.625

7.500

0 1.875 3.750 5.625 7.500

Ratio vs Execution Time

Figure E.1: Power-PC Machine (itb237-01)

0

0.938

1.875

2.813

3.750

0 1.825 3.650 5.475 7.300

Ratio vs Execution Time

Figure E.2: Intel-based Machine (itb237-04

124 E. Statistics

0

0.00425

0.00850

0.01275

0.01700

0 0.25 0.50 0.75 1.00

Rate vs Availability

Figure E.3: Power-PC Machine (itb237-01)

0

0.01

0.02

0.03

0.04

0 0.25 0.50 0.75 1.00

Rate vs Availability

Figure E.4: Intel-based Machine (itb237-04)

